
Softwareport: the three
musketeers of a Model
Driven Integrated Solution

Softwareport provides a software development platform that combines
high-level control, embedded software and virtual prototyping into
one integrative solution. The Softwareport is a joint venture of three
software companies - Cordis, Festa Solutions and Unit040 - that
uses a Model Driven Engineering approach, saving time, costs and
programming headaches.

Combining high-level and low-level control logic

Softwareport’s solutions are especially perfectly suitable for

situations where high-level and low-level control operate

together, for example in the distribution of luggage in an

airport. The high-level control of coordinating incoming and

outgoing flights and the low-level control of operating

 the luggage belts have to cooperate seamlessly. It could

also be used in the operation of a series of bridges, where

the arrival of the ships (high-level control) and the

mechanics of opening and closing the bridges (low-level

control) have to work in tandem. Another example is a

smart factory (Industry 4.0), where robots, 3D printers

CASE STUDY

CASESTUDY SOFTWAREPORT

and automated guided vehicles (AGV’s) work together to

manufacture and assemble products, increasing overall

efficiency.

Developing software for these systems is painstaking and

error-prone due to the complex behaviors that have to

be managed and integrated. Through a Model Driven

Engineering approach, Softwareport uses an elegant and

simplified solution that saves time, energy and human

coding mistakes.

Why Softwareport?
Softwareport can accelerate the transition to Industry

4.0, where manufacturing processes are smart and

fully automated. Softwareport is able to develop both

hardware and software for smart factories in less time

and with reduced costs. Because of its automatic software

coding based on functional design, hardware and

software development run parallel instead of sequential.

The option of virtual simulation using a digital twin

enhances efficiency by eliminating the time consuming and

costly process of physical prototype testing and bug fixing.

The use of running a digital twin parallel to the physical

factory also makes maintenance more predictable. In later

stages technical modifications and factory updates can also

be virtually tested for risk-free implementation in the factory.

How do the companies work together?
Each of the three companies comprising Softwareport

takes care of one aspect of the integrative solution. Festa

Solutions specializes in developing high-level control

software, Cordis takes care of low-level control logic and

Unit040 provides a visualization and simulation tool (‘digital

twin’) to guarantee functional implementation of the

software.

ICT Group works with Softwareport and trains software

engineers in the Model Driven Engineering approach. For

more information about Cordis and Unit040 and their

practical application please see our Case Study about Cordis

Suite. Below we will explain the advantage of working with

Festa Solutions for developing high-level control software in

a real-world scenario.

Case Study: developing software for an Air Traf-
fic Control system using the Festa Engine
Festa Solutions specializes in developing High-Level Control

(HLC) software systems from design to development,

hosting and maintenance. Based on a Model Driven

Engineering approach Festa offers higher quality, flexibility

and functionality at lower costs and less throughput time.

Festa’s HLC systems are especially geared for use in smart

factories, where internet-of-things technology and Big Data

require vertical integration of IT systems.

ICT Group’s software engineer Annie Jovitha Arulanandam

enrolled in an internship with Festa Solutions to become

more familiar with its software tool, the Festa Engine.

Softwareport offers a complete solution to combine high- and low-level control software plus digital simulation into a single package using a
Model Driven Engineering approach.

https://ict.eu/case/using-cordis-suite-design-control-logic/
https://ict.eu/case/using-cordis-suite-design-control-logic/

CASESTUDY SOFTWAREPORT

The Festa Engine uses a Model Driven Engineering approach, generating flawless code for software artifacts from
predesigned models.

Software for a model Air Traffic Control System

The Festa Engine is especially particularly suitable to build

software for systems that are use case driven, where

different actors can perform different actions on the same

system. Web applications with multiple users are a good

example. Annie used the Festa Engine to develop software

for a system that processes Air Traffic Control requests for

logistics planning. This was a training assignment to give

Annie practical experience with the Festa Engine. The

resulting software would not be applied in the real world.

The system Annie designed serviced two users. The first

user (called ‘Requestor’ in the model) makes air transport

requests, specifying flight origin and destination, the

number of passengers and/or the total weight of the

cargo. The Requestor should be able to use functionalities

such as ‘create’, ‘search’, ‘modify’ and ‘cancel this

request’, which have to be programmed in the software.

This request is then sent to a second user (called ‘Checkor’

in the model) that has to approve or reject the air

transport request made by the Requestor.

Functional model: defining actions and class

diagrams
In line with the Model Driven Engineering approach the

Festa Engine uses graphical models that represent a

functional overview of the software. Building software

with the Festa Engine requires two modelling phases. The

first phase is functional modelling, which is done by the

domain expert, for instance a product analyst.

In this phase the domain expert generally creates two

models. The first is a use case model, which defines the

Use case model for the Air Traffic Control system. The model lists the
two users Requestor and Checkor, each with their own specific actions.

CASESTUDY SOFTWAREPORT

actions the model provides to the outside world. In our

example these are ‘create’, ’search’, ‘modify’, ‘cancel’,

’approve’ and ‘reject’ air transport requests. The

second model contains the class diagrams, which

represent the main entities and their relations. In our

example the entities are Nations, Air Transport

Requests and Aircraft Type.

search and retrieve data. Finally Annie created a connector

diagram to export the services to the outside world.

The class diagram above describes how a user from a Nation can
create and own an Air Transport Request with a particular Aircraft
Type.

Implementation model: transitioning data and
generating reports
In the second modelling phase the implementation model

is created, which is where the software engineer enters

the picture. The software engineer now models the data

service layer, security and authentication. The first

modelling phase was all about the ‘what’, this phase

concerns itself with the ‘how’, or in other words, how the

data is transitioned in the system.

The implementation model creates the interfaces for

the client in the form of a CRUD (Create Read Update

Delete) matrix, is used to actualise the use cases or

workflows. In this phase, entities and service models are

added by the software engineer. Annie created several

DTO’s (Data Transfer Objects) that define how the data is

transferred and stored in the database.

Next Annie generated reports to ensure that the search

functions in the software - like ‘Search air transport

request’ - would return the right values (passengers, cargo,

destination, etc.). For this she created report diagram

models. The report diagram is an API that acts as an

interface for the Festa Engine, so the Engine knows how to

The implementation model above created by Annie describes the
implementation of the CRUD services.

The report diagram model above describes the ‘search’ and ‘retrieve’
functions.

Coding business logic by hand
When all modelling was done Annie only had to press a

button to generate the software code. The generated code

represents 80% of the final product. The missing 20%

consists of business rules and logic, which is not taken care

of by the models. Annie had to program these rules

manually (for example the rule that each nation can make

multiple air transport requests). She also had to create

unique business keys for all entities, to prevent the same

request being created twice.

The code was then validated by the Festa Engine against

the flow and rules created by the models. Finally the

artefacts were created, ready to use in the application

CASESTUDY SOFTWAREPORT

The Festa Engine creates 80% of the software code, displayed above in
blue. Annie still had to code the green pieces manually.

server. The Festa Engine supports different programming

languages. Currently these are Java, JavaScript, C# and

Objective-C.

Flawless code generated straight from the models

The great advantage of Model Driven Engineering is that

flawless code is generated straight from the models. Annie:

“In traditional software development I would have to

code everything by hand. But with the Festa Engine all the

plumbing code and authentication is taken care of. If you

want to make changes, you just change the model and with

the push of a button you get new code. No copy-pasting is

required.”

Eye-opener
The Festa Engine taught Annie many valuable new insights.

One of them was how the use of models can facilitate

software development. “The only models I had seen before

were customer requirements on paper. In the Festa Engine

I could actually give life to models and directly create code

out of them. That was a real eye-opener. It also meant I had

to model in domain specific language, which was new to

me.”

Using models facilitated the communication between

the stakeholders, Annie found. “The models represent a

language that both the domain expert and the software

engineer understand. Since the model is actually an image,

you graphically see what is required. Traditional requirements

in text form are much harder to understand.”

According to Annie, one of the biggest advantages of the

Festa Engine is its faultless code generation. “I always had to

be alert not to make manual coding mistakes. Since the

model generates the code, it’s one hundred percent error

proof.”

Contacts:

Annie Jovitha Arulanandam
Software Designer

E: annie.arulanandam@ict.nl

Ronald Wiericx
Operations Manager

E: ronald.wiericx@ict.nl

Professor Doctor Dorgelolaan 30

5613 AM Eindhoven

Kopenhagen 9

2993 LL Barendrecht

The Netherlands

T +31 (0)88 908 2000

F +31 (0)88 908 2500

info@ict.nl

www.ict.nl

Curious about the possibilities of Model Driven
Engineering and Festa Solutions? Feel free to
contact our software engineer Annie Jovitha
Arulanandam to discuss the opportunities for
your organisation.

l

mailto:saurav.paul%40ict.nl?subject=
mailto:annie.arulanandam%40ict.nl%20?subject=
mailto:ronald.wiericx%40ict.nl?subject=
mailto:info%40ict.nl?subject=
http://www.ict.nl
mailto:Martin.Bijl%40ict.nl?subject=

