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1	 Problem Statement

Quality-Assurance is a key component in the delivery of 
any kind of machinery, especially for equipment that can 
potentially harm humans, is expensive to repair, or is vital 
to have low downtime on. We are currently seeing several 
trends in the hightech systems engineering field: systems 
are becoming more and more complex, thus needing 
more and more quality-assurance effort; At the same time, 
it is becoming increasingly difficult to have hardware 
available for testing, due to cost or availability of parts. 
Lastly, it is becoming increasingly difficult to find skilled 
employees to meet the increasing need for quality 
assurance. Since it is not possible to throw more 
resources at the problem, it is therefore key to improve 
the efficiency of the QA process, to ensure we can 
continue to deliver safe, reliable, and performant systems.

2	 Methodology

As a potential solution to improve efficiency, we propose 
the use of Model-Based Testing (MBT). We will compare it 
to ’traditional’ testing to show how it is different, and 
explore its strengths and weaknesses.

2.1	 Traditional Testing
Traditional testing starts by making a test-plan of some 
sorts. This test plan can be a document of test steps and 
expected results to be manually executed and checked 
off, or it can be a series of fully automated (possibly BDD) 
acceptance tests. In reality it is usually a combination of 
various techniques: a suite of automated tests in 
combination with a manual QA sign-off. What these 
processes have in common is that the test plan needs to 
be created by hand: a developer or QA person has to 
imagine all the possible uses of the system, and make 
sure the important scenarios are covered by the tests in 
the test plan. 

The advantage of this approach is that you can be sure 
the important scenarios and use-cases are covered by 
tests. This makes it so that when the test plan passes, 
there can be a high confidence the system is functioning 
correctly. The disadvantage of this approach is that it 
requires a lot of up-front work to come up with every test 
scenario, and to describe all of them. Furthermore, the 
number of possible paths through the system scales 
exponentially with the complexity of the system. If the 
system becomes sufficiently large, the test suite will 
become even larger, greatly increasing required 
maintenance effort. This is the problem model-based 
testing proposes to solve.

2.2	 Model-Based Testing
In contrast to traditional testing, model-based testing does 
not require writing out every test scenario. Instead, a 
model of the system’s interface behaviour is created. This 
model describes the different states of the interface/ 
system, and the ways in which the system transitions from 
one state to another. This treats the system under test as a 
black box: internal functioning is hidden, only the 
interfaces to the outside world are known.

2.2.1	 Interface models
Interfaces are modelled as labeled transition systems, also 
known as automata or state machines. This means that it 
distinguishes various states of the interface/system, and 
specifies the way in which this system can transition from 
one state to the other: either as a result of a stimulus from 
the outside world, or spontaneously. In the example  
Figure 1 below, the behaviour model of an automatic door 
is given. This state machine has two ’stable’ states: open 
and closed, and two transient states: opening and closing. 
Stimuli to the system from outside are prefixed with a ?, 
and responses from the system to the outside world are 
prefixed with a !.

Abstract
Model-Based Testing (MBT) is a novel testing approach that automates exploratory testing. 
By automating, this process can be done faster, more systematically, and fully automated, for 
example during downtime at night. This paper will describe how model-based testing and its tools 
work, and how we successfully applied it to automatically test our system. We believe the addition 
of MBT to your test process can make a valuable contribution to the quality of your product.



WHITEPAPER   MODEL-BASED TESTING: IMPROVED QUALITY-ASSURANCE WITH LESS EFFORT

This model expresses the following behaviour: The 
system starts in the closed state. Whenever a ?open 
stimulus is given, the door goes to the opening state, from 
which it will at some point send a !opened response, 
letting us know the door is now in the open state. From 
there, if a ?close stimulus is given to the system, the door 
goes into the closing state. At some point then the door 
will send a !closed response, letting us know it is now 
back to the closed state. At any point during opening or 
closing, the stimulus ?stop can be triggered. This will 
cause the door to stop in an unknown state, and wait for
either a ?open or ?close stimulus. 

Note that this model only describes the externally visible 
behaviour of the system interface. No details are given 
about how the door is opened or closed. The internal 
behaviour such as which sensors/actuators are used or in 
what sequence the different parts of the door move, is 
irrelevant to the behaviour of the interface, and treated as 
a black box.

2.2.2	 Model-Based Test execution
To test the example system in Figure 1 using traditional 
testing, you would have to create a test for every possible 
walk through the system. This means you would need to 
create a list of test scenarios similar to:

	 •  ?open → !opened → ?close → !closed

	 •  ?open → ?stop → ?close → !closed

	 •  etc...

In contrast, with model-based testing, the idea is to let the 
test application come up with these scenarios, based on 
the model. This means there is no need for individual test 
scenarios. Instead, the interface model is the only input 
needed. Based on the provided mode, the test tooling will 
walk through the model, and try to provoke stimuli it sees 
available, while waiting for system responses the model 
claims to come.

2.2.3	 Non-determinism
You may have noticed in the example model Figure 1 there 
are some states where multiple stimuli (starting with ?) are 
possible. This means that according to the model, one of 
these stimuli can be triggered nondeterministically, i.e. we 
cannot predict beforehand what will happen. While the 
test is running, one of the possible stimuli is chosen to 
execute semi-randomly (the reasoning behind this will be 
explained later). Therefore, it is not possible to predict 
beforehand which branch of the behaviour will be chosen 
during each test run. 

Similarly, there can also be states in the model where 
multiple responses (starting with !) are possible. This 
indicates that one of the possible responses will be fired 
non-deterministically. That is, we can be sure one of these 
responses will be fired, but we cannot predict which one. 
During the test that means the tester will wait in the state 
for the first seen response of the modelled possibilities, 
and then continue to the next state as indicated. This 
means only one of the possible responses is expected to 
arrive; if multiple are expected to arrive, that would need 
to be explicitly described in the model. If a response is 
received from the system that is not expected according 
to the model, or if no response is received at all (within the 
timeout), the test will fail.

2.2.4	 Coverage and model-exploration
In the previous section we discussed that due to 
nondeterminism, the test will semi-randomly walk through 
the behaviour model during the test. In reality, doing this 
purely randomly would be a waste of time. A smarter way 
to do this would be to consider model coverage: while 
testing, the test application can track which nodes and 
transitions it has already seen. This will result in some kind 
of percentage-of-the-model-seen while testing, as a 
measure of the testing progress. 

	 Figure 1: Example model of an automatic door
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This can usually be visualized like shown in Figure 2:

Next to being a convenient visualisation of which part of 
the model was seen during the test, and which part was 
not, this measurement of coverage also provides 
confidence in the test outcome. Similar to more common 
forms of coverage such as code coverage, a high 
coverage percentage gives a good confidence about the 
completeness of a test suite. Getting 100% coverage 
indicates the test has tried all possible stimuli, and has 
observed all expected responses (according to the 
model). This does not mean the system cannot still 
behave in a way that is outside of the expected model, but 
it at least shows that it has not done so yet.

2.2.5	 Intelligent test execution
Using the coverage information of a test run, the test 
exploration can be made more intelligent. Instead of 
randomly choosing one of the possible stimuli, the test 
application can make choices that attempt to maximize 
the local or global coverage of the model. This means that 
in a node where the tester has previously already 
triggered two out of three stimuli, it can choose the third 
– uncovered – stimulus to increase the test coverage. 
Even in cases where all stimuli local to a node have 
already been seen, the tester can intelligently pick the one 
that has the highest probability of getting the system into 
a part of the behaviour model that was not yet seen 
during the current test run. 

3	 Practical Application

For the remainder of this document we will demonstrate 
model-based testing as implemented with Axini[1], a 
commercial tool for model-based testing. Axini is in the 
loop while running tests. This means that it does not 
generate all test scenarios up front, but instead generates 
the next step in the test, while the test is running. This 
saves a lot of disk space and compilation time required for 
pre-generated tests, and it also allows it to make 
intelligent decisions based on how the system is reacting 
to the test.

3.1	 System under test
For demonstration purposes, this paper will show 
modelbased Testing as applied to our demonstrator 
system. This is a warehouse that stores disks of different 
colours in boxes. Items are taken from and placed back 
into boxes at the output location, but the boxes 
themselves never leave the warehouse. The interface is 
kept simple and limited to initializing, storing, and 
retrieving items from the warehouse. The system is shown 
in Figure 3.

	 Figure 2: Example coverage of a test run

	� Figure 3: The digital twin of the warehouse to be tested. 

Note the storage rack on the right, stacker robot in the 

back and import/export conveyor on the left.
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3.2	 Test model
The state transition diagram of our system behaviour is 
shown in Figure 4:

The model of our system identifies three stable states:

•	� NoBoxAtOutput – There is no box at the output. 
Allowed actions are: ?RetrieveItem to retrieve a filled 
box, and ?RetrieveEmpty to retrieve an empty box.

•	� FullBoxAtOutput – There is a box at the output with an 
item in it, that can be removed externally. Allowed 
actions are: ?Store to store the box again, and 
notification ?ItemTaken notifies the warehouse the item 
was removed from the box, and the box is now empty.

•	� EmptyBoxAtOutput – There is an empty box at the 
output, it can accept an item being placed into the box 
externally. Allowed actions in this state are: ?Store to 
store the empty box, or notification ?ItemPlaced to let 
the warehouse know the box is now filled.

In between these stable states, there are some temporary 
states: RetrievingItem, RetrievingEmpty, and Storing. In 
these states, the system is busy fulfilling its request and 
will reply with a !Done event once done. Note that during 
these temporary states, no actions are allowed.

3.3	 Adapter
Since Axini[1] (and also other model-based test tooling) 
provides a generic interface to run the test, an adapter is 
required to map the generated steps from the test 
protocol to our system-specific interface. 

In case of Axini, it is running on a server (local or in the 
cloud), and sends basic strings to indicate what to do next. 
We created a test adapter application in C# that is running 
together with our system-under-test, and connects to Axini 
via a websocket. It then translates the stimuli received 
from the test runner to calls on the gRPC interface of our 
example system. Conversely, it also transforms responses 
from the system into the test protocol, and notifies Axini 
about them. Figure 5 shows a schematic represenation of 
this setup:

The adapter allows the test runner to focus on its task, 
generating test scenarios, without needing information 
about the system it is testing. The knowledge holder of 
the system-under-test is then responsible for translating 
the general test steps to calls on the system they are the 
experts at. This allows a great deal of flexibility: The test 
runner can run anywhere, as long as it can be connected 
to; similarly, the adapter can also run anywhere, as long as 
it can connect to the test runner and the system-under-
test. It also means freedom of technology for the adapter. 
We are running an adapter written in C# that connects to 
our gRPC interfaces, provided by a C++ application, but 
we could also have chosen to write the adapter in for 
example Python or C++ instead. This setup also allows us 
to run tests in a variety of different setups. For example, it 
is possible to run the adapter talking to the real machine, 
our digital twin, or talking to a fully simulated environment. 
As long as the adapter can talk to the interface, the test 
can run.

4	 Results

4.1	 Test outcome and coverage
After setting up our test model and adapter, we were able 
to run the test on our system with relative ease. The test 
run executes multiple iterations of configurable length 
before resetting to the start, to avoid the test runner 
getting stuck in a neighbourhood of the model it cannot 
get out of. In the screenshot shown in Figure 6, you can 
see the different test runs done, and the coverage 
measurement taken while the test was running: 

	� Figure 4: behaviour model of the warehouse

	� Figure 5: Test adapter setup
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Looking at this graph, one obvious question to ask
is why the coverage plateaus at 75% and never reaches
100%. Luckily, Axini also visualizes the coverage of the
executed test. This visualisation is shown in Figure 7.

Looking at this visualisation of the coverage, it becomes 
immediately obvious why 100% coverage is not reached: 
The system is working well, and the error cases are never 
seen. Also covering these cases would require some form 
of error injection, to force the errors.

4.2	 Bad weather testing
As you may have noticed, the behaviour model discussed
in 3.2 does not contain any errors or not-allowed actions,
while there are some error cases visible in the 
screenshots in the previous section. 

This illustrates the fact that while creating the behaviour 
model, the modeller can decide how much behaviour of 
the system they want to include. If only good weather 
behaviour is modelled, the test runner will never decide to 
try things that are not allowed. Another approach might be 
to also add all the not-allowed actions to the model, but 
explicitly adding the expectation that the system refuses 
this action. 

Figure 8 shows part of the model presented in 3.2, but this 
time with bad weather transitions added in red. Adding 
these actions tells the test runner it can actually try these 
actions, but it should expect them to be refused by the 
system-under-test, without any state change. Running the 
tester on this model will test many more different state/
action combinations than the test before, not only testing 
all the allowed actions are actually allowed, but also 
testing that all not-allowed actions are indeed not allowed.

4.3	 Error injection and the test clamp
Even after adding bad weather into the model, it is 
possible that the system never fails any of the allowed 
actions. Since there is code in the system handling failures 
and recovery, if we cannot force a failure, we cannot 
reliably cover that code with tests. 

WHITEPAPER   MODEL-BASED TESTING: IMPROVED QUALITY-ASSURANCE WITH LESS EFFORT

	� Figure 6: Outcome of a successful test run

	� Figure 8: Partial behaviour model with bad weather

	� Figure 7: Coverage visualisation of the model
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To make sure these failures are also covered, we need to 
add error injection. This means it is no longer enough to 
have the test adapter connect to the system’s provided 
interfaces, we also need the adapter to influence the 
system’s required interfaces, so simulated failures can be 
injected, letting us test the failure handling.  To be able to 
set this up, the adapter setup needs to change as shown 
in Figure 9:

Connecting also to the required interfaces for the system
lets the test runner serve as a simulator, including error 
injection. This setup is very powerful because the test 
runner can control everything, but it has drawbacks
in that it is much more complex to set up, and requires 
writing and maintaining more models, also for the required
interfaces. 

For now we have done some initial tests with this setup, 
but have not settled on a way of setting up our
system with the test clamp yet. This is something we plan 
to investigate further in the future.

4.4	 Coverage efficiency
With instrumented executables it is possible to measure
the code quality of a test run (model-based or traditional).
This means that we can also draw comparisons on the 
efficiency of the tests, by measuring how many lines of 
test code or model code are required to reach a certain 
coverage. Preliminary measurements at one of our 
customers show that the model-based test approach 
seems to be about three times more efficient in covering 
the system’s code, compared with traditional tests. 

That means that the size of the MBT test models is 
about three times smaller than the traditional test code, 
while managing to achieve the same level of code 
coverage. These are early numbers and more 
measurements need to be done over time, but this seems 
to indicate that the modelbased testing approach scales 
better with scaling system complexity, compared to 
traditional forms of testing.

5	 Conclusion

After using model-based testing on several projects, we
have seen a few advantages:

•	 �Modelling interfaces makes it easier to communicate 
about behaviour — Writing down a formal, 
unambiguous behaviour description has advantages all 
throughout the software development process: It helps 
to unambiguously communicate between stakeholders, 
starting from requirements specification and design, all 
the way through implementation and quality assurance. 
We have often seen that having a clear state model can 
trigger discussions clearing up misconceptions about 
– even existing – system behaviour.

•	� Bugs are found earlier — We run our modelbased test 
suite nightly, on the latest development version, 
effectively starting the QA process before the software 
is even installed on a real machine. This reduces the 
number of bugs leaking from development to QA, and 
therefore also prevents bugs leaking out of QA to 
customers. As found by NIST[2] (Table 5-1), the cost of 
software defects scales rapidly the later defects are 
found in the software life cycle. Therefore finding bugs 
earlier can save development costs.

•	� More coverage, different bugs — Model-based Testing 
lives up to the idea that it will find things humans do not 
think about: It regularly finds issues in scenarios that 
were not considered beforehand, and that are not 
covered by other tests. 

•	� More efficient test code — We can clearly see that MBT 
is a more efficient way of increasing test coverage, 
compared to traditional testing. A much smaller, and 
easier to maintain test model is able to reach similar 
test coverage to large traditional test suites. We expect 
that as the system complexity grows, the difference in 
effort required to reach higher coverage will only skew 
more and more in favor of MBT. 
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	� Figure 9: The ‘test clamp’: Adapters connecting to both the 

provided and required interfaces of a system
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On the other hand, MBT is not a silver bullet. There are 
also some disadvantages and challenges to the approach:

•	� Need for experts to get started — Setting up a new 
way of testing is not trivial. It requires a different way of 
working, a different way of integrating into the software 
ecosystem, and even a different way of thinking/
programming. This means that while MBT has the 
potential to reduce the workload on the QA 
department, it will require extra effort from the 
development teams. It is often a good idea to enlist 
existing expertise holders (like the ICT HTU Center of 
Excellence) to kick-start a project. Once the foundation 
is set, the domain knowledge holders can often take 
over the creation and maintenance of the test model.  

•	 �Not a replacement for traditional tests — model-based 
testing should be seen as an addition to existing test 
suites. Due to the nondeterministic component of the 
test runner, it is difficult to ensure any specific scenario 
is tested. If there are some scenarios or user 
interactions that must absolutely work and should not 
regress, these scenarios should still be covered by a 
suite of traditional tests.

6	 Recommendations

Overall, we see the value in model-based Testing as an 
additional tool for quality assurance. If you are building a 
product with high quality requirements, limited hardware 
time or limited QA availability, we believe the addition of 
MBT can make a valuable contribution to the quality of 
your product. Getting started on your own might be hard, 
so we recommend getting in touch with us or other 
knowledge holders in this field, to discuss if this 
technology can help you, and how you can kick-start your 
journey into model-based testing.

References
[1] 	� Axini: Model-Based Testing platform.  

https://www.axini.com/en/.
[2] �	�N. I. of Standards & Technology. The economic impacts 

of inadequate infrastructure for software testing. 
Technical report, NIST, 2002.

Author: Perry van Wesel - Designer ICT High Tech

mailto:info%40ictgroup.eu%0D?subject=%0D
https://www.ict.eu/nl
mailto:centerofexcellence%40ict.nl?subject=
mailto:hazal.taskiran%40ict.nl?subject=
https://www.axini.com/en/

	1 Problem Statement 
	2 Methodology 
	2.1 Traditional Testing 
	2.2 Model-Based Testing 
	2.2.1 Interface models 
	2.2.2 Model-Based Test execution 
	2.2.3 Non-determinism 
	2.2.4 Coverage and model-exploration 
	2.2.5 Intelligent test execution 


	3 Practical Application 
	3.1 System under test 
	3.2 Test model 
	3.3 Adapter 

	4 Results 
	4.1 Test outcome and coverage 
	4.2 Bad weather testing 
	4.3 Error injection and the test clamp 
	4.4 Coverage efficiency 

	5 Conclusion 
	6 Recommendations 
	References 

