
Start Increasing Your Software
Productivity: Model Driven
Technologies, The State Pattern,
and Dezyne
Ewald de Bruijn, Jasper Premchand, Julien Schmaltz, ICT Group, September 2019

WHITEPAPER

P 2

WHITEPAPER DEZYNE AND THE STATE PATTERN

1 INTRODUCTION

Innovation is driven by software. To support the further

development of software intensive systems, a lot of

software must be written in a short amount of time and

with good quality. Major issues preventing the rapid

improvement of these systems include the cost of ensuring

software quality and the lack of software designers. It is

very difficult to recruit the required personnel. Developing

good quality software requires much effort. For instance,

a lot of time is spent in keeping documentation and code

synchronised. Also, when the system gets complex, it

becomes very difficult to still see the big picture. Migration

and other re-factoring tasks become harder and harder.

Model Driven Technologies (MDT) constitute promising

solutions to help software intensive companies to be more

productive. From models code is automatically generated.

This generation is error-free. Many artefacts can be

automatically generated from models: documentation,

graphical representations like state charts or sequence

diagrams. For many companies, a major challenge is how

to access these new model driven technologies and gain

their benefit. The question is how to introduce these new

technologies while staying open for usual business. This is

exactly the challenge addressed by this paper.

At ICT, our objective is to guide customers in adopting and

deploying this innovative software Engineering solutions.

We want to guide them through several steps, each step

improving their software Engineering process and making

them capable to sustain their market position and boost

their innovation capabilities.

In this paper, we describe one of these steps, namely, the

replacement of handwritten code with code generated from

models in the Context of state machines implemented

following the state pattern. Models are written using the

Dezyne language developed by Verum Software Tools1.

After introducing the necessary background, including

Dezyne, the state pattern and a running example, we show

our approach to replace handwritten code for states and

transitions with code generated from Dezyne models. The

Visual Studio projects and the Dezyne models can be found

on-line2.

2 BACKGROUND

2.1 A running example: a simple Engine
As a running example, we consider a simple Engine. The

Engine can be in two states: either it is ON or it is OFF. The

Engine initially is OFF. Users can turn the Engine on and

off using commands StartEngine and TurnOffEngine. For

some reasons (for instance, safety or mechanical aspects),

there are some restrictions about when commands can be

executed:

-	 A StartEngine command while the Engine is ON will 	

	 damage the Engine.

-	 A TurnOffEngine command while the Engine is OFF 	

	 will damage the Engine.

Finally, the Engine is equipped with internal safety checks

performed before starting up. Depending on the results of

these checks, the Engine might fail to start.

Abstract: The state pattern provides software designers with an implementation of state
machine such that states and transitions are separated from the actual actions performed
by a component. Dezyne is an environment supporting formal verification and code
generation for the design of complex interactions between state machines. In this paper,
we show a systematic approach to introduce Dezyne generated code in a state driven
component built using the State Pattern. This first step towards the new standard in
software Engineering is relatively easy and brings about many benefits, including, increase
in code readability, state charts visualisation, synchronisation of documentation with code,
and error-free code generation.

 1https://www.verum.com/
 2https://github.com/dezyne/community

P 3

WHITEPAPER DEZYNE AND THE STATE PATTERN

A controller for the simple Engine shall ensure these

restrictions. To assist operators, the controller shall raise

exceptions to a dedicated exception handler component.

Typically, such a component will forward exceptions to a

user interface.

2.2 Dezyne
Dezyne is a language and a set of associated tools that

enable software Engineers to create, explore, and formally

verify component based designs for embedded and

technical software systems. A Dezyne system consists in

components communicating via their exposed interfaces.

Each interface is composed of a signature and a behaviour.

The signature describes the possible in- and out-events

while the behaviour specifies the possible sequences

over these events. A unique feature of Dezyne is formal

verification. The verifier proves that each component

implements the behaviour specified at its interfaces. The

result is a system that is proven to behave according to

the specified interfaces. Code is generated from verified

components. The code generator guarantees the semantics

equivalence between the generated code and the verified

models.

2.3 The State Pattern
We consider an object (called Context) that contains state

driven behaviour. The main objective of the state pattern is

to provide programmers with an implementation for state

machines that adheres to the open/closed principle. In the

pattern, the state behaviour can be modified or extended

without affecting the essential parts of the Context object.

Figure 1 shows a possible class diagram describing the state

pattern.

The Context object receives commands from its

environment, say, cmdA and cmdB. These commands

trigger the execution of some actions provided by

interface IActions. The selection of the action depends

on the current state of the object. The Context delegates

the management of states and transitions to interface

IAbstractState. The actual states in which the Context

can be are concrete realisations of this interface. The

single responsibility of these concrete states is to handle

transitions, that is, to decide the actions to be executed

given the current command and state, and to determine

the next state. The execution of the actions is delegated to

the IActions interface.

Figure 1: class diagram for the state pattern

Figure 2: sequence diagram illustrating the state pattern

Context

+ cmdA()
+ cmdB()

ConcreteStateA

+ cmdA()
+ cmdB()

ConcreteStateB

+ cmdA()
+ cmdB()

+ abstractState

+ IActions
IEngineActions

ISetState

0..1

0..1

1

+ ISetState

IAbstractState

+ cmdA()
+ cmdB()

0..1

0..1

0..1

Main: Context: ConcreteStateA:

ConcreteStateB:

create

cmdA

cmdB

cmdA(this)

actionA()

SetState(ConcreteStateB)

SetState(ConcreteStateA)

actionB()

cmdB(this)

The interaction between the different classes is illustrated in

the sequence diagram in Figure 2. Assume that initially the

Context is in state ConcreteStateA. When the Context

receives command cmdA, it forwards it to the current

concrete state object, actually via interface IAbstractState.

The state object decides to execute actionA(). It then creates

concrete object ConcreteStateB and tells the Context to

set its current state to ConcreteStateB. When the next

command is received, the selection of the action to be

executed and the computation of the next state are

delegated to concrete state ConcreteStateB.

P 4

WHITEPAPER DEZYNE AND THE STATE PATTERN

3 IMPLEMENTATION OF THE SIMPLE Engine
	 USING THE STATE PATTERN

Figure 3 shows a class diagram of our implementation

of the simple Engine following the state pattern. The

Context object is an Engine object. The Engine inherits

from the ISetState interface and implements the SetState

method that effectively changes the current state. The

Engine has pointers to interfaces IEngineActions and

IExceptionHandler realized by the EngineActions and

ExceptionHandler classes. These interfaces provide the

Engine with methods to control the actual Engine and to

raise exception. The computation of the state transitions

is delegated to the IEngineState interface. Two concrete

states may be created: state OffState and state OnState.

Figure 3: the simple Engine implementation following the state pattern

Figure 4 shows a sequence diagram which depicts the

object interaction behaviour of the state pattern for the

Engine. When a start is received, the Engine forwards it

to the current state, stored in private variable m_state:

bool Engine::start()
{
	 std::cout << m_intEngineID << " Engine
-> " << "\n";
	 bool res = m_state->start();
	 return res;
}

The object OffState then triggers the execution of the

StartEngine method of EngineActions. If the start

is successful, a new state is created and the Engine

(that is, the Context object) current state is updated

by calling method SetState. If the Engine failed to

start, only an exception is raised. Below we show the

code handling the start command from state OffState.

Variables m_IEngineActions, m_ISetState, and m_

IExceptionHandler are references to the suggested

interfaces.

bool OffState::start()
{
	 bool res = false;
	 res = m_IEngineActions.StartEngine();
	 if (res) {
		 std::shared_ptr<IEngineState>
	 newState(new OnState(m_ISetState,
 m_IEngineActions,m_	
	 IExceptionHandler));
		 m_ISetState.SetState(newState);
	 }
	 else {
		 m_IExceptionHandler.			
	 RaiseException("Start failed !");
	 }
	 return res;
}

The transition from state OnState back to state OffState

is handled in a similar way. In the next section, we show

how to replace the parts of the code handling states and

transitions with code generated from a Dezyne model.

Engine

- EngineID: integer

+ start ()
+ stop ()
+ SetState

OffState

+ start ()
+ stop ()

EngineActions

+ StartEngine ()
+ TurnOffEngine ()

ExeptionHandler

+ RaiseException ()

OnState

+ start ()
+ stop ()

+ IEngineState

+ IEngineActions

+ IEngineActions

+ IExceptionHandler

IEngineActions

IEngineState

IExceptionHandler

ISetState

+ ISetState

1 1

1

1

0..1

0..1

1

1

1

1

1

1

P 5

WHITEPAPER DEZYNE AND THE STATE PATTERN

							
	

Step 1: Specification of the core state machine

The objective of this step is to create the interface specification

for the core state machine, that is, the code handling states

and transitions. The specification of the interface describes the

behaviour seen by clients of that interface. This visible behaviour

is easily extracted by looking at only the states and transitions

in the original code. The code for method OffState::start()

described earlier shows that after a start command a possible

transition from state OFF to state ON occurs or the Context

remains in the current state. Figure 5 shows the Dezyne

specification of this visible behaviour. The interface can react

on the commands start and stop. The interface initially starts

in state OFF. In that state, a start command can either result in

a transition to state ON with a return result true or result in a

self-transition (no state change) with a return result false. In that

state a command stop is illegal. In state ON, the only legal action

is stop and brings the machine back to state OFF. The right part

of Figure 5 shows the state chart generated for that interface.

Figure 5: the core FSM and its specification

4 INTRODUCING MODEL DRIVEN TECHNOLOGIES: 	
	 DEZYNE FOR STATE BEHAVIOUR

Our systematic approach to introduce Dezyne code

proceeds in the following steps:

1.	 Create the specification of the core state 		

	 machine

2.	 Model the required external interfaces and 		

	 components

3.	 Create the robust component, called the armour 	

	 component

4.	 Implement the core component

5.	 Create the Dezyne system

6.	 Generate and integrate code

Figure 4: a sequence diagram illustrating the transition starting
up the Engine

Main: Engine: OffState:

start()

true

start()

SetState(OnState)

stop()

true

true

create

EngineActions:

StartEngine()

OnState:

TurnOffEngine()

P 6

WHITEPAPER DEZYNE AND THE STATE PATTERN

The return values are then used to replace the illegals to

proper return values. The following code shows this for

state ON in Figure 5. The illegal is replaced with a return

value callResult_t.Illegal:

[state.ON] {

	 on start : {

		 reply(callResult_t.Illegal);}

	 on stop : {

		 state = state_t.OFF;

		 reply(callResult_t.Succeeded);}}

The robust component provides this robust interface

and requires the core interface and the interface to the

exception handler. The signature of the component is the

following:

component DznSimpleEngineArmour {

	 provides IDznSimpleEngineRobust

pSimpleEngineRobust;

	 requires IDznSimpleEngine rSimpleEngine;

	 requires injected IDznExceptionHandler

iExceptionHandler;

	

	 behaviour {

…}}

Step 2: Model the required external interfaces and

components

Interfaces IEngineActions and IExceptionHandler will

not be implemented in Dezyne as they do not belong

to any state related. In Dezyne terminology, we call

the components implementing these interfaces native.

These interfaces are kept very simple. They define

possible events and have no restriction about when

these events are possible. For instance, the model of

interface IEngineActions is as follows:

interface IDznEngineActions {

	 in bool StartEngine();

	 in void TurnOffEngine();

	

	 behaviour {

		 on StartEngine : reply(true);

		 on StartEngine : reply(false);

		 on TurnOffEngine : {}

	 }

}

It states that StartEngine can be called at any time

and its return value can be either true or false. It

is always possible to call TurnOffEngine. We then

create a native component for that interface, that is, a

component without behaviour:

component DznEngineActions {

	 provides IDznEngineActions

pEngineActions;

}

Step 3: Create the armour component

The objective of this step is to create an armour for

the core state machine. This armour will only forward

legal calls and will raise exceptions for illegal ones.

To make the information about robustness available

to environments using our robust simple Engine, we

modify the return values for commands start and stop

to the following enumeration:

enum callResult_t {Succeeded, Failed,

Illegal};

The meaning of each enumeration literal is as follows:

-	 Succeeded: the call was legal and completed 		

	 successfully.

-	 Failed: the call was legal and failed to complete.

-	 Illegal: the call was illegal.

The signature of the robust interface is the following:

interface IDznSimpleEngineRobust {

	 in callResult_t start();

	 in callResult_t stop();

… }

P 7

WHITEPAPER DEZYNE AND THE STATE PATTERN

Below we show the behaviour in state OFF showing

the use of the callResult_t enumeration:

[state.OFF] {

	 on pSimpleEngineRobust.start() : {

		 bool res = rSimpleEngine.start();

		 if (res) {

			 state = state_t.ON;

			 reply(callResult_t.

Succeeded);

		 } else {

			 iExceptionHandler.

RaiseException($"Start failed !"$);

			 reply(callResult_t.Failed);}}

	 on pSimpleEngineRobust.stop() : {

		 iExceptionHandler.RaiseException(

$"Illegal stop, start Engine first !"$);

		 reply(callResult_t.Illegal);}}

The verifier will prove that this component implements the

provided interface while respecting the specifications of

the required interfaces. In particular, the verifier will

detect any possible illegal events forwarded to interface

IDznSimpleEngine.

Step 4: Implement the core component

The objective of this step to create component

DznEngineFSM implementing interface

IDznSimpleEngine (see Figure 5). Because component

DznEngineFSM is restricted to the interaction with

the Engine actions and it is guarded by an armour, its

implementation only has to deal with expected commands.

It can ignore exceptions and other unexpected calls.

component DznEngineFSM {

	 provides IDznSimpleEngine pSimpleEngine;

	 requires IDznEngineActions rEngineActions;

	

	 behaviour {

	 state_t state = state_t.OFF;

		

		 [state.OFF] {

			 on pSimpleEngine.start() : {

					 bool res = rEngineActions.	

					 StartEngine();

					 if (res) state = state_t.ON;

					 reply(res);

			 }

		 }

		 [state.ON] {

				 on pSimpleEngine.stop() : {

					 rEngineActions.TurnOffEngine();

					 state = state_t.OFF;

					 }

		 }

	 }

Notice the relation between the code written in Dezyne

and the original C++ code for method OffState::start().

The Dezyne code only contains the essential aspects,

namely, the control of the sequence of actions and the

computation of the state transition. There is no need to

handle pointers and no need to handle exceptions as well.

The former is dealt with in the Dezyne code generator.

The latter is dealt with in the armour component.

Step 5: Create the Dezyne system

This step combines the previous components into a system

that will later be integrated with the original C++ code.

Figure 6 shows the component diagram of this system.

The top level interface is the robust one. The verifier

guarantees that the visible behaviour of that entire system

refines the behaviour specified for the robust interface.

The code for the system is as follows:

component DznSimpleEngineSystem {

	 provides IDznSimpleEngineRobust 		

	 pSimpleEngineRobust;

	 system {

		 DznSimpleEngineArmour EngineArmour;

		 DznEngineFSM EngineFSM;

		 DznExceptionHandler exceptionHandler;

		 DznEngineActions EngineActions;

		 EngineArmour.pSimpleEngineRobust <=> 	

		 pSimpleEngineRobust;

		 exceptionHandler.pExceptionHandler 	

		 <=> *;

		 EngineFSM.pSimpleEngine <=> 		

		 EngineArmour.rSimpleEngine;

		 EngineFSM.rEngineActions <=> 		

		 EngineActions.pEngineActions;}}

.

P 8

WHITEPAPER DEZYNE AND THE STATE PATTERN

Step 6: Generate and integrate

From the verified Dezyne model, we automatically

generate code. To integrate this generated code into

our C++ Engine we need (1) to tell the Dezyne system

where to find the code for the native components and

(2) to tell the Engine where to find the Dezyne system.

For native components, Dezyne generates pure virtual

classes. To link these classes to actual code, one needs

to sub-class such classes. For instance, we link the

DznEngineActions to the IEngineActions as follows:

class DznEngineActions : public

skel::DznEngineActions {

public:

	 DznEngineActions(const dzn::locator&

loc) :

		 m_EngineActions(loc.

get<IEngineActions>())

		 , skel::DznEngineActions(loc){}

	 bool pEngineActions_StartEngine()

{return m_EngineActions.StartEngine();}

	 void pEngineActions_TurnOffEngine()

{return m_EngineActions.TurnOffEngine();}

private:

	 IEngineActions& m_EngineActions;

};

The “locator” (loc) allows us to retrieve a reference to the

interface IEngineActions. When constructing the Engine

object, the locator is given a reference to that interface;

actually the realisation thereof. Here is the code extract:

Engine::Engine(const int intEngineID) :

	 m_intEngineID(intEngineID),

	 m_EngineActions(new EngineActions()),

	 m_exceptionHandler(new

ExceptionHandler()),

	 m_DnzEngineSystem(loc.set(rt).set(*m_

EngineActions).set(*m_exceptionHandler))

{

}

The link between the Engine object and the Dezyne

generated code is simply realised by calling the necessary

methods of the Dezyne system. For instance, for the

stop command:

void Engine::stop()

{

	 std::cout << m_intEngineID << " Engine

-> " << "\n";

	 m_DnzEngineSystem.pSimpleEngineRobust.

in.stop();

}

5 CONCLUDING REMARKS

We presented a systematic method to introduce a model-

driven technology – namely, Dezyne from Verum Software

Tools – in components built with the state pattern. The

size of the model together with the code gluing the native

components is about the same as the original C++ code.

From our experience, the effort to introduce such Dezyne

models and integrate the generated code is low because

the state pattern already separated state transition aspects

from actual actions. Still, the introduction of generated

code and models already results in many benefits:

-	 Synchronization between code and documentation: 	

	 The Dezyne tool set supports the generation of 		

	 state charts, sequence diagrams, and component

	 diagrams. These artefacts are automatically generated 	

	 from the Dezyne textual models. In practice, designers

Figure 6: Dezyne component diagram

WHITEPAPER DEZYNE AND THE STATE PATTERN

Kopenhagen 9

2993 LL Barendrecht

The Netherlands

T +31 (0)88 908 2000

F +31 (0)88 908 2500

info@ict.nl

www.ict.nl

	 will create UML diagrams while creating the overall 	

	 design. When implementing these design documents, 	

	 code and documentation inevitably drift apart from 	

	 each other as the effort to keep the code and the 	

	 documentation increases significantly over time. Having 	

	 the documentation produced from the code saves this 	

	 effort and ensures that the code and its documentation 	

	 remains synchronised.

-	 Automatic creation of images:

	 From our experience, reviewing state charts is more 	

	 effective than reviewing textual code. Using images, 	

	 unexpected transitions, unreachable states – among 	

	 others – become clearly visible. Non-specialist can 	

	 look at the state machines and already ask questions 	

	 about specific transitions or states. In code – even in 	

	 the state pattern – states and transitions are hidden

	 in software constructions like pointers, interfaces, etc.

	 The benefit of using Dezyne is here that state charts,

	 component diagrams, and sequence diagrams can be

 	 automatically generated from the model.

-	 Easy code migration:

	 Because the code is generated from the model, 		

	 migrating to other languages or to new version

 	 of languages amounts to push the generate code

	 button and to re-write the glue code in the native 	

	 components.

-	 Big step forward:

	Now that individual state machines are modelled in

Dezyne, one can start taking further steps. For instance,

one can start splitting large and complex state machines

into smaller ones. This improvement can be done using

the verifier as a safety net: the verifier will prove that

the new structure with several state machines correctly

implement the original interface. Another possible

step is to start modelling cooperating state machines.

Creating correct systems composed of communicating

state machines is very difficult. This is where the benefits

of using formal verification are the highest.

The presented method has been applied to several

components in a reverse Engineering project at one of

our customers. At ICT, we are convinced that model-

driven technologies are means to support our customers

in keeping their edge over the competition. We

provide them with guidance through this fundamental

transformation of the way we create software. Looking

at the shortage in software designers and the speed of

evolution of technologies and markets, it is time to take

steps towards the digitalisation of software production.

For more information, please contact

Julien.Schmaltz@ict.nl.

mailto:info%40ict.nl?subject=
http://www.ict.nl
mailto:Julien.Schmaltz%40ict.nl.?subject=

