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1	 Problem Statement

Software – and especially software controlling 
hardware – has a complexity problem. Adding more 
variables into a system’s behaviour will increase the 
possible states of the software exponentially. This is 
why it is easy to maintain small programs, but very hard 
to change large pieces of software: all the variables in 
the software combinatorially multiply into an extremely 
large state-space. This phenomenon is called state 
space explosion, and will be familiar to any developer 
with experience working on large code-bases.

As a result of this complexity, it can become  
prohibitively difficult to oversee full system behaviour, 
as it involves interaction between multiple different 
components that each have their own behaviour.  
This makes it impossible for a human mind to oversee 
full system behaviour and all edge cases of large 
systems. Unfortunately, this understanding of the full 
system behaviour is required to effectively create and 
maintain our software.

2	 Model-Driven Engineering

The solution we present for these problems is  
Model- Driven Engineering (MDE). The central idea is  
to create an abstract model of the software, and to let a 
computer automatically verify the model’s correctness, 
instead of putting the burden of understanding the 
entire system on the developer. This verification 
mathematically checks if the model conforms to its 
specification, and if it conforms to the specification of 
other components it communicates with. Once the 
model is successfully validated, code is automatically 
generated out of the model. Since the model is verified 
to be correct and code generation is fully automatic,  
the resulting code can also be assumed to be correct.

Abstract Software systems tend to increase in complexity as they grow and age, making it difficult 
to maintain an understanding of the full system. Changes in requirements or personnel over time 
makes it even harder to oversee a system’s functionality. We propose Model-Driven Engineering 
(MDE) – specifically state-based modelling – as a solution to deal with the complexity of modern 
systems, and to produce correct, robust and maintainable software. Despite challenges acquiring 
engineers with experience and expertise for these relatively new tools, from our experience in 
applying these tools, we believe MDE can be valuable to create high quality, maintainable 
software, even for extremely complex and evolving systems.
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2.1	 State-based behaviour modelling
The definition of MDE as given above provides room  
for a wide range of possible ways of modelling and 
verifying systems and software. For the rest of this 
paper we will narrow the scope to state-based 
modelling in combination with formal verification. 
This means modelling a piece of software as a set of 
states, and the different transitions between these 
states as a result of external stimuli.

Consider the step the programming field took when 
moving from low-level languages like assembly, into 
more strictly typed languages like C or C++.  
The addition of the type system meant that it is no 
longer possible to assign values of incorrect types.  
It is no longer possible to call functions with the wrong 
number of arguments. No longer can we accidentally 
call a function that does not exist. This stricter typing of 
the code has eliminated entire categories of bugs, 
which are now caught by the compiler.

State-based behaviour modelling can be seen as the 
next step in this direction. On top of strictly specifying 
the types of variables, functions and interfaces, the type 
system also contains the behaviour of these entities. 
This means the ’compiler’ (or the verifier in this case), 
will prevent incorrect usage of interfaces not only from 
a type perspective, but also from a behavioural 
perspective.

2.2	 Modelling behaviour
Consider the example model in Figure 1 describing the 
state behaviour of a door:

The model in Figure 1 has four states: closed, opening, 
open and closing. Furthermore, it specifies that the 
action open can only be done while the door is closed, 
leading to state opening ; the action close can only be 
done while the door is open, leading to state closing ; 
and finally that the states opening and closing are 
guaranteed to at some point send out events opened 
and closed before ending up in the states open or 
closed, respectively.

This interface model is a contract between two  
components. On one hand, the door promises to 
provide this behaviour, and is proven by the verification 
to indeed do so. On the other hand, components using 
the door promise they will use this interface correctly, 
and are proven by the verification to do so. This 
verification ensures that this contract of behaviour is 
always adhered to. If, for example, at any point the 
software tries to close the door while it is not in the 
open state, the verification will show an example of a 
trace in which this happens, and throws an error. This 
means that all edge cases must be dealt with during 
development, making it impossible to ’forget’ to think 
about some scenario in which your contracts are 
violated.

2.3	 Modelling implementations
Implementations for interfaces like the one shown in 
Figure 1 also come in the form of state machines.  
Both models are written as ’code’ in the same Domain 
Specific Language. Where an interface describes  
one state model with its states and events, the 
implementation model declares any number of required 
or provided ports, each with some interface type. The 
implementation state model then specifies how its 
internal state changes as a result of events from the 
various ports, and which events to send out to its 
connected components in response. For example the 
implementation of the door might provide the interface 
in Figure 1, and require an a port with interface for the 
actuator that opens/closes the door, and two ports with 
interfaces for sensors that detect if the door is fully 
opened or closed.

 
Figure 1: example state model of a door
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If any situation is reachable in which the 
implementation violates interface behaviour on any of 
its ports – no matter how long it might take to get there 
– the verifier will flag this violation and force the 
developer to handle this correctly.

2.4	 Systems as composition of models
Now that we have interfaces that describe behaviour 
and components with provided and required ports (of 
some interface type), we can define our software as a 
system of inter-connected components. Required ports 
are connected to provided ports of other components 
to compose a system of multiple components, each 
with their own responsibilities. The remaining ports are 
connected to glue code to connect the system the the 
outside world. 

An example of such a system can be found in Figure 2. 
This example shows how the system of an airlock can 
be composed of multiple components (with possibly 
multiple instances of the same type), building up more 
complex behaviour by composing multiple simpler 
models. The example shows the basic components of 
the system at the bottom: a sensor and a motor for 
each of the two doors of the airlock. The door 
components encapsulates the logic of using motors 
and sensors, and provides a simple open/close 

interface. Then the lock component encapsulates the 
correct behaviour of the airlock, for example verifying 
that no situation exists where both doors are open at 
the same time. This lock component can then provide a 
simple transferIn/transferOut interface that allows 
moving items from one side of the airlock to the other 
side. This interface can then again be used by a higher 
level model that is for example arranging the flow of 
items through the system, needing to pass through the 
airlock at some point.

Figure 2: A hierarchical system of components,  
each modelled as a state model. Image generated  
with Popili[1]
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Every component in this system will have its  
behaviour verified to always adhere to its provided and 
required interfaces, leading to extremely robust and 
predictable software, even when making large changes 
to the components internally. The verification always 
makes sure that: there is no regression on the provided 
interfaces; and that all consuming components are 
correctly using the new interface.

3	 Applicability

As the name suggests, state-based modelling is 
especially applicable to systems that have a  
well-defined set of states and transitions between them. 
Usually these systems are very interactive, they start 
doing something by sending a stimulus to the outside 
world, then they wait for some kind of result back.

This means that state-based modelling is especially 
suited to systems with real-world hardware 
components. In these systems, it is very natural to 
model the state behaviour of low level components as 
state models. For example a motor that can be turned 
on or off, and then waiting for a sensor to switch, 
causing the motor to be turned off again.

Having hardware is no requirement however, MDE can 
also be used purely digitally, as long as the system  
has a set of well-defined states and events.

3.1	 The difference between verification and testing
It is important to discuss the difference between 
verification and testing. Both serve the purpose of 
verifying the system’s requirements, and to protect from 
regressions. The main difference is that tests are limited 
to the pre-defined set of scenarios: if some sequence of 
actions is not covered by any tests, regression or failure 
to meet specification will not be noticed.

In contrast, verification always considers all possible 
scenarios in the system, even scenarios that are 
infinitely long. While testing actually executes the 
software to assert its behaviour, verification will instead 
try to create a mathematical proof based on the model. 
If this proof cannot be created, a counter-example is 
produced showing where the system is deviating from 
its specification. If a verification proof is produced, that 
means the system is guaranteed to always behave 
according to its specification.
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4	 Benefits

4.1	 More natural way of expressing behaviour
For many software systems, especially ones controlling 
hardware, it is natural to think about the functionality of 
the system in terms of states and transitions between 
those states. This is generally how engineers and 
architects will design the system, and how requirements 
are specified.

However, when it comes to programming these 
systems, the general-purpose programming languages 
we use (like C/C++) are not especially tailored to 
state-driven behaviour. In contrast, state modelling 
languages like Coco (part of Popili[1]) or Dezyne[2] are 
designed around modelling your system this way. This 
results in clearer code that is easier to understand and 
maintain. Additionally, these specific-purpose 
languages allow for useful visualisations that are 
difficult to create out of general purpose languages, 
see Figure 3 for an example of a state transition 
diagram generated from a formal model.

4.2	 Highly reliable and robust software
Verification ensures by proof that contracts are always 
adhered to, even in infinitely long use of the system. 
This provides a high level of certainty when modifying 
implementation, all contracts in the system are still 
adhered to after the modification.

In practice, we see that the use of model-driven 
engineering as discussed in this paper leads to very 
low defect rates in the software it produces. Due to the 
formal verification, it is impossible to forget to handle 
certain edge cases, hence there are very few bugs of 
use-cases that were not considered during 
development. Because of the verification it is also 
impossible to accidentally modify the behaviour on your 
interface, leading to a low chance of regression when 
changing the software, especially in combination with a 
good set of tests.
 

Figure 3: A state model of a door interface.

4.3	 Requirements-focused test suite
As a result of the verification of our models and 
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need to have low-level unit tests of individual 
components. What we see in practice is that the test 
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requirements, and test a large vertical slice of the 
system at once, almost like an integration test. This 
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will mostly cover user scenarios as described by system 
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modules. As a result, the test suite is focused on 
safeguarding the requirements of the system. That is 
not to say there are no longer any unit tests: any glue or 
data-processing code external to the models does of 
course still benefit from a good test suite.
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4.4	 Early feedback on requirements
As mentioned before, the formal verification considers 
all possible combinations of events and use-cases.  
This means that if all interfaces are modelled according 
to their requirements, and the verification still manages 
to find a problem in their integration, that might indicate 
a gap in the requirements. In practice, this means 
requirements issues are found much earlier: already 
during the design or development phases, rather  
than during the testing of the system, or even worse 
after delivery.

This leads to faster development iteration, fewer delays, 
and since cost of defects are lower the earlier the 
defect is found[3], this also reduces costs.

5	 Challenges

5.1	 Verification times
The main challenge when working with state-based 
model-driven engineering is the verification times of 
your models. The formal verification of your models 
considers all possible combinations of events, for an 
infinite time period. The verification algorithm scales 
exponentially with its input size: this means that 
depending on the complexity of the interfaces, the 
verification might have to (in exceptional cases) check 
millions or sometimes even billions of states. This 
requires performant tooling and avoiding duplicate 
work. For this reason it is also a bad idea to put all 
behaviour into a single model, as the combinatoric 
multiplication of inputs will cause your verification time 
to explode. Intelligently distributing behaviour over 
multiple models therefore does not only serve to keep 
the code readable and maintainable, but can also 
drastically reduce time spent waiting for verification. 
Table 1 gives an indication of the verification times of 
our Coco[1] models, and how the verification time scales 
with the complexity of the models.

5.2	 Different way of working need for expertise
Working with model-driven engineering tools is 
different to ’regular’ programming: while the way  
of thinking about the system (in terms of states and 
actions) is the same, these are new tools to learn, and 
not many developers have existing experience using 
these techniques. Next to needing to learn the 
modelling language, it also requires knowledge and 
experience about the ecosystem in which the tools are 
being used, and how they integrate into the existing 
software and development environment. Furthermore,  
it takes experience to understand how to best architect 
your models in a way that keeps them correct, 
expressing/verifying the right things, and how to keep 
the verification times low (see section 5.1).
 
5.3	 Reliance on tools
While the models produced for tools such as Popili[1]  
or Dezyne[2] are fairly ’generic’ descriptions of state 
models that are valid in any context, the languages  
are tool-specific. Without the tools and their code 
generation, the models are only useful as a description, 
but you lose the benefits of the verification and code 
generation. Therefore there is some vendor lock-in 
when using these tools, in a way there is not when 
using something as generic as C++. Since models are 
highly abstract and verified to be correct, it is usually 
not that difficult to translate models from one language 
into another language, if really needed. Dezyne[2]  
has also open-sourced their verification and code 
generation, so it could be forked and maintained, were 
the current maintainers to disappear.

Model lines of code #ports #states #transitions verification time

Oven 143 2 288 648 0.03s

Sorting line 100 2 1,765 4,154 0.01s

Processing station 186 5 16,439 33,314 0.1s

Supervisor 975 9 22,552,400 39,302,925 74.4s

Table 1: Comparing the verification times of various Coco[1] models



6	 Conclusion

To conclude, we see many benefits from using model- 
driven engineering: Teams using MDE seem to be able 
to iterate quickly, deliver very robust code with low 
defect rates, and have a deep understanding of the 
behaviour of the system they are working on. 
Furthermore, we see that state modelling clearly 
describes system behaviour, and the models with their 
generated diagrams are a nice way to communicate 
behaviour to stakeholders.
The challenges with MDE mostly come down to 
experience. Managing the complexity of the models, 
designing a useful architecture, knowing what to verify 
and what not to, as well as integrating the tools and 
way of working into the existing software workflow 
takes experience, where experienced people are rare 
to find. With that in mind, the ICT Center of Excellence 

has been building this experience for a while now, and 
has been applying MDE at our customers. We want to 
help spread the use of what in our view is a very 
valuable technology. If you are interested, do check out 
Popili[1] and Dezyne[2], and feel free to contact us for 
questions, demos, trainings or consulting! 

References
[1]	� Popili: State-based Model-Driven Engineering tool 

by Cocotec. https://cocotec.io/ Their modelling 
language is named Coco.

[2]	� Dezyne: State-based Model-Driven Engineering 
tool by Verum. https://dezyne.org/.

[3]	� N. I. of Standards & Technology. The economic 
impacts of inadequate infrastructure for software 
testing. Technical report, NIST, 2002.

Kopenhagen 9
2993 LL Barendrecht

info@ictgroup.eu
+31 (0)88 908 2000 ictgroup.eu

ICT High Tech
Center of Excellence
	 centerofexcellence@ict.nl
	 +31 (0)88 908 2000

WHITEPAPER   TRANSFORMING HOW WE DEVELOP HIGHLY RELIABLE AND HIGHLY ROBUST SOFTWARE WITH MODEL-DRIVEN ENGINEERING


