
Transforming how we develop highly
reliable and highly robust software
with Model-Driven Engineering
ICT High Tech - Center of Excellence

WHITEPAPER TRANSFORMING HOW WE DEVELOP HIGHLY RELIABLE AND HIGHLY ROBUST SOFTWARE WITH MODEL-DRIVEN ENGINEERING

1	 Problem Statement

Software – and especially software controlling
hardware – has a complexity problem. Adding more
variables into a system’s behaviour will increase the
possible states of the software exponentially. This is
why it is easy to maintain small programs, but very hard
to change large pieces of software: all the variables in
the software combinatorially multiply into an extremely
large state-space. This phenomenon is called state
space explosion, and will be familiar to any developer
with experience working on large code-bases.

As a result of this complexity, it can become
prohibitively difficult to oversee full system behaviour,
as it involves interaction between multiple different
components that each have their own behaviour.
This makes it impossible for a human mind to oversee
full system behaviour and all edge cases of large
systems. Unfortunately, this understanding of the full
system behaviour is required to effectively create and
maintain our software.

2	 Model-Driven Engineering

The solution we present for these problems is
Model- Driven Engineering (MDE). The central idea is
to create an abstract model of the software, and to let a
computer automatically verify the model’s correctness,
instead of putting the burden of understanding the
entire system on the developer. This verification
mathematically checks if the model conforms to its
specification, and if it conforms to the specification of
other components it communicates with. Once the
model is successfully validated, code is automatically
generated out of the model. Since the model is verified
to be correct and code generation is fully automatic,
the resulting code can also be assumed to be correct.

Abstract Software systems tend to increase in complexity as they grow and age, making it difficult
to maintain an understanding of the full system. Changes in requirements or personnel over time
makes it even harder to oversee a system’s functionality. We propose Model-Driven Engineering
(MDE) – specifically state-based modelling – as a solution to deal with the complexity of modern
systems, and to produce correct, robust and maintainable software. Despite challenges acquiring
engineers with experience and expertise for these relatively new tools, from our experience in
applying these tools, we believe MDE can be valuable to create high quality, maintainable
software, even for extremely complex and evolving systems.

WHITEPAPER TRANSFORMING HOW WE DEVELOP HIGHLY RELIABLE AND HIGHLY ROBUST SOFTWARE WITH MODEL-DRIVEN ENGINEERING

2.1	 State-based behaviour modelling
The definition of MDE as given above provides room
for a wide range of possible ways of modelling and
verifying systems and software. For the rest of this
paper we will narrow the scope to state-based
modelling in combination with formal verification.
This means modelling a piece of software as a set of
states, and the different transitions between these
states as a result of external stimuli.

Consider the step the programming field took when
moving from low-level languages like assembly, into
more strictly typed languages like C or C++.
The addition of the type system meant that it is no
longer possible to assign values of incorrect types.
It is no longer possible to call functions with the wrong
number of arguments. No longer can we accidentally
call a function that does not exist. This stricter typing of
the code has eliminated entire categories of bugs,
which are now caught by the compiler.

State-based behaviour modelling can be seen as the
next step in this direction. On top of strictly specifying
the types of variables, functions and interfaces, the type
system also contains the behaviour of these entities.
This means the ’compiler’ (or the verifier in this case),
will prevent incorrect usage of interfaces not only from
a type perspective, but also from a behavioural
perspective.

2.2	 Modelling behaviour
Consider the example model in Figure 1 describing the
state behaviour of a door:

The model in Figure 1 has four states: closed, opening,
open and closing. Furthermore, it specifies that the
action open can only be done while the door is closed,
leading to state opening ; the action close can only be
done while the door is open, leading to state closing ;
and finally that the states opening and closing are
guaranteed to at some point send out events opened
and closed before ending up in the states open or
closed, respectively.

This interface model is a contract between two
components. On one hand, the door promises to
provide this behaviour, and is proven by the verification
to indeed do so. On the other hand, components using
the door promise they will use this interface correctly,
and are proven by the verification to do so. This
verification ensures that this contract of behaviour is
always adhered to. If, for example, at any point the
software tries to close the door while it is not in the
open state, the verification will show an example of a
trace in which this happens, and throws an error. This
means that all edge cases must be dealt with during
development, making it impossible to ’forget’ to think
about some scenario in which your contracts are
violated.

2.3	 Modelling implementations
Implementations for interfaces like the one shown in
Figure 1 also come in the form of state machines.
Both models are written as ’code’ in the same Domain
Specific Language. Where an interface describes
one state model with its states and events, the
implementation model declares any number of required
or provided ports, each with some interface type. The
implementation state model then specifies how its
internal state changes as a result of events from the
various ports, and which events to send out to its
connected components in response. For example the
implementation of the door might provide the interface
in Figure 1, and require an a port with interface for the
actuator that opens/closes the door, and two ports with
interfaces for sensors that detect if the door is fully
opened or closed.

Figure 1: example state model of a door

opening

closing

openclosedstart

? open ! opened

? close! closed

WHITEPAPER TRANSFORMING HOW WE DEVELOP HIGHLY RELIABLE AND HIGHLY ROBUST SOFTWARE WITH MODEL-DRIVEN ENGINEERING

If any situation is reachable in which the
implementation violates interface behaviour on any of
its ports – no matter how long it might take to get there
– the verifier will flag this violation and force the
developer to handle this correctly.

2.4	 Systems as composition of models
Now that we have interfaces that describe behaviour
and components with provided and required ports (of
some interface type), we can define our software as a
system of inter-connected components. Required ports
are connected to provided ports of other components
to compose a system of multiple components, each
with their own responsibilities. The remaining ports are
connected to glue code to connect the system the the
outside world.

An example of such a system can be found in Figure 2.
This example shows how the system of an airlock can
be composed of multiple components (with possibly
multiple instances of the same type), building up more
complex behaviour by composing multiple simpler
models. The example shows the basic components of
the system at the bottom: a sensor and a motor for
each of the two doors of the airlock. The door
components encapsulates the logic of using motors
and sensors, and provides a simple open/close

interface. Then the lock component encapsulates the
correct behaviour of the airlock, for example verifying
that no situation exists where both doors are open at
the same time. This lock component can then provide a
simple transferIn/transferOut interface that allows
moving items from one side of the airlock to the other
side. This interface can then again be used by a higher
level model that is for example arranging the flow of
items through the system, needing to pass through the
airlock at some point.

Figure 2: A hierarchical system of components,
each modelled as a state model. Image generated
with Popili[1]

exchange
Item Exchange

lock
Lock

door1
Door

door2
Door

sensor1
Sensor

motor1
Motor

sensor2
Sensor

motor2
Motor

System

WHITEPAPER TRANSFORMING HOW WE DEVELOP HIGHLY RELIABLE AND HIGHLY ROBUST SOFTWARE WITH MODEL-DRIVEN ENGINEERING

Every component in this system will have its
behaviour verified to always adhere to its provided and
required interfaces, leading to extremely robust and
predictable software, even when making large changes
to the components internally. The verification always
makes sure that: there is no regression on the provided
interfaces; and that all consuming components are
correctly using the new interface.

3	 Applicability

As the name suggests, state-based modelling is
especially applicable to systems that have a
well-defined set of states and transitions between them.
Usually these systems are very interactive, they start
doing something by sending a stimulus to the outside
world, then they wait for some kind of result back.

This means that state-based modelling is especially
suited to systems with real-world hardware
components. In these systems, it is very natural to
model the state behaviour of low level components as
state models. For example a motor that can be turned
on or off, and then waiting for a sensor to switch,
causing the motor to be turned off again.

Having hardware is no requirement however, MDE can
also be used purely digitally, as long as the system
has a set of well-defined states and events.

3.1	 The difference between verification and testing
It is important to discuss the difference between
verification and testing. Both serve the purpose of
verifying the system’s requirements, and to protect from
regressions. The main difference is that tests are limited
to the pre-defined set of scenarios: if some sequence of
actions is not covered by any tests, regression or failure
to meet specification will not be noticed.

In contrast, verification always considers all possible
scenarios in the system, even scenarios that are
infinitely long. While testing actually executes the
software to assert its behaviour, verification will instead
try to create a mathematical proof based on the model.
If this proof cannot be created, a counter-example is
produced showing where the system is deviating from
its specification. If a verification proof is produced, that
means the system is guaranteed to always behave
according to its specification.

WHITEPAPER TRANSFORMING HOW WE DEVELOP HIGHLY RELIABLE AND HIGHLY ROBUST SOFTWARE WITH MODEL-DRIVEN ENGINEERING

4	 Benefits

4.1	 More natural way of expressing behaviour
For many software systems, especially ones controlling
hardware, it is natural to think about the functionality of
the system in terms of states and transitions between
those states. This is generally how engineers and
architects will design the system, and how requirements
are specified.

However, when it comes to programming these
systems, the general-purpose programming languages
we use (like C/C++) are not especially tailored to
state-driven behaviour. In contrast, state modelling
languages like Coco (part of Popili[1]) or Dezyne[2] are
designed around modelling your system this way. This
results in clearer code that is easier to understand and
maintain. Additionally, these specific-purpose
languages allow for useful visualisations that are
difficult to create out of general purpose languages,
see Figure 3 for an example of a state transition
diagram generated from a formal model.

4.2	 Highly reliable and robust software
Verification ensures by proof that contracts are always
adhered to, even in infinitely long use of the system.
This provides a high level of certainty when modifying
implementation, all contracts in the system are still
adhered to after the modification.

In practice, we see that the use of model-driven
engineering as discussed in this paper leads to very
low defect rates in the software it produces. Due to the
formal verification, it is impossible to forget to handle
certain edge cases, hence there are very few bugs of
use-cases that were not considered during
development. Because of the verification it is also
impossible to accidentally modify the behaviour on your
interface, leading to a low chance of regression when
changing the software, especially in combination with a
good set of tests.

Figure 3: A state model of a door interface.

4.3	 Requirements-focused test suite
As a result of the verification of our models and
generating correct-by-construction code, there is no
need to have low-level unit tests of individual
components. What we see in practice is that the test
suites in MDE projects tend to more closely reflect the
requirements, and test a large vertical slice of the
system at once, almost like an integration test. This
means that as the system is built, the test suite created
will mostly cover user scenarios as described by system
requirements, as a collaboration of multiple software
modules. As a result, the test suite is focused on
safeguarding the requirements of the system. That is
not to say there are no longer any unit tests: any glue or
data-processing code external to the models does of
course still benefit from a good test suite.

Main

Closing

ClosedUnknown

Opening

Open

FinishedError

Error

Finished

OpenDoor()OpenDoor()CloseDoor()

CloseDoor()

WHITEPAPER TRANSFORMING HOW WE DEVELOP HIGHLY RELIABLE AND HIGHLY ROBUST SOFTWARE WITH MODEL-DRIVEN ENGINEERING

4.4	 Early feedback on requirements
As mentioned before, the formal verification considers
all possible combinations of events and use-cases.
This means that if all interfaces are modelled according
to their requirements, and the verification still manages
to find a problem in their integration, that might indicate
a gap in the requirements. In practice, this means
requirements issues are found much earlier: already
during the design or development phases, rather
than during the testing of the system, or even worse
after delivery.

This leads to faster development iteration, fewer delays,
and since cost of defects are lower the earlier the
defect is found[3], this also reduces costs.

5	 Challenges

5.1	 Verification times
The main challenge when working with state-based
model-driven engineering is the verification times of
your models. The formal verification of your models
considers all possible combinations of events, for an
infinite time period. The verification algorithm scales
exponentially with its input size: this means that
depending on the complexity of the interfaces, the
verification might have to (in exceptional cases) check
millions or sometimes even billions of states. This
requires performant tooling and avoiding duplicate
work. For this reason it is also a bad idea to put all
behaviour into a single model, as the combinatoric
multiplication of inputs will cause your verification time
to explode. Intelligently distributing behaviour over
multiple models therefore does not only serve to keep
the code readable and maintainable, but can also
drastically reduce time spent waiting for verification.
Table 1 gives an indication of the verification times of
our Coco[1] models, and how the verification time scales
with the complexity of the models.

5.2	 Different way of working need for expertise
Working with model-driven engineering tools is
different to ’regular’ programming: while the way
of thinking about the system (in terms of states and
actions) is the same, these are new tools to learn, and
not many developers have existing experience using
these techniques. Next to needing to learn the
modelling language, it also requires knowledge and
experience about the ecosystem in which the tools are
being used, and how they integrate into the existing
software and development environment. Furthermore,
it takes experience to understand how to best architect
your models in a way that keeps them correct,
expressing/verifying the right things, and how to keep
the verification times low (see section 5.1).

5.3	 Reliance on tools
While the models produced for tools such as Popili[1]
or Dezyne[2] are fairly ’generic’ descriptions of state
models that are valid in any context, the languages
are tool-specific. Without the tools and their code
generation, the models are only useful as a description,
but you lose the benefits of the verification and code
generation. Therefore there is some vendor lock-in
when using these tools, in a way there is not when
using something as generic as C++. Since models are
highly abstract and verified to be correct, it is usually
not that difficult to translate models from one language
into another language, if really needed. Dezyne[2]
has also open-sourced their verification and code
generation, so it could be forked and maintained, were
the current maintainers to disappear.

Model lines of code #ports #states #transitions verification time

Oven 143 2 288 648 0.03s

Sorting line 100 2 1,765 4,154 0.01s

Processing station 186 5 16,439 33,314 0.1s

Supervisor 975 9 22,552,400 39,302,925 74.4s

Table 1: Comparing the verification times of various Coco[1] models

6	 Conclusion

To conclude, we see many benefits from using model-
driven engineering: Teams using MDE seem to be able
to iterate quickly, deliver very robust code with low
defect rates, and have a deep understanding of the
behaviour of the system they are working on.
Furthermore, we see that state modelling clearly
describes system behaviour, and the models with their
generated diagrams are a nice way to communicate
behaviour to stakeholders.
The challenges with MDE mostly come down to
experience. Managing the complexity of the models,
designing a useful architecture, knowing what to verify
and what not to, as well as integrating the tools and
way of working into the existing software workflow
takes experience, where experienced people are rare
to find. With that in mind, the ICT Center of Excellence

has been building this experience for a while now, and
has been applying MDE at our customers. We want to
help spread the use of what in our view is a very
valuable technology. If you are interested, do check out
Popili[1] and Dezyne[2], and feel free to contact us for
questions, demos, trainings or consulting!

References
[1]	� Popili: State-based Model-Driven Engineering tool

by Cocotec. https://cocotec.io/ Their modelling
language is named Coco.

[2]	� Dezyne: State-based Model-Driven Engineering
tool by Verum. https://dezyne.org/.

[3]	� N. I. of Standards & Technology. The economic
impacts of inadequate infrastructure for software
testing. Technical report, NIST, 2002.

Kopenhagen 9
2993 LL Barendrecht

info@ictgroup.eu
+31 (0)88 908 2000 ictgroup.eu

ICT High Tech
Center of Excellence
	 centerofexcellence@ict.nl
	 +31 (0)88 908 2000

WHITEPAPER TRANSFORMING HOW WE DEVELOP HIGHLY RELIABLE AND HIGHLY ROBUST SOFTWARE WITH MODEL-DRIVEN ENGINEERING

