
smarter solutions smarter solutions

ICT > Brandguide > Logo

PANTONE 3135

C:100 M:5 Y:30 K:0

R:0 G:151 B:177

#0097B1

PANTONE Cool Gray 11

C:0 M:0 Y:0 K:76

R:97 G:97 B:96

#616160

Positionering smarter solutions

t.o.v. het logo

Logo met pay-off niet kleiner

gebruiken dan 40 mm breed

Logo niet kleiner gebruiken

dan 15 mm breed

40 mm

15 mm

CASE STUDY

Smooth adoption of
Verum’s Dezyne to model
software for a service tool

Dezyne is a software development tool developed by Verum, based
on a Model Driven Engineering approach. Dezyne is primarily used
for designing complex software systems. Due to its built-in formal
verification capability, Dezyne is especially suited for safety critical
systems used in aerospace, automotive, chip manufacturing and the
medical industry.

Companies using Dezyne have reduced their time to

market by 20%, while reducing software bugs by 25%

and costs by 50%. Dezyne is one of the Model Driven

Engineering toolsets ICT Group works with, reshaping

traditional approaches of software design. Using today’s

technology we educate tomorrow’s software engineers.

Below we describe the functionality of Dezyne using a

development project: the development of a service tool for

a startup/shutdown controller. This project was carried out

by our software engineer Saurav Paul.

CASESTUDY DEZYNE

First experiences with Dezyne
Saurav Paul was introduced to the methodology of

Model Driven Engineering during his Master study

Embedded Systems at the Technical University of Delft.

When attending a Dezyne Community meeting shortly

after his graduation, he recognized a strong parallel

between Dezyne and what he had learned at university.

Enthusiastic about Dezyne’s possibilities, he started

using the toolset for a small software design project.

“According to me Model Driven Engineering is the future

of software development,” Saurav says. “So I was eager

to start using Dezyne.”

Using Dezyne in a project commissioned by
Philips
After his graduation Saurav Paul started working for ICT

Group. He was chosen as the software engineer in a

project commissioned by Philips. In this project Dezyne

was used as the primary toolset.

Philips develops x-ray systems for image guided medical

procedures. The x-ray machines are powered by complex

startup/shutdown controllers that ensure reliability and

safety. As the behavior of these controllers is complex, a

dedicated service tool is used to check and service them.

Saurav designed the software for this new service tool,

using Dezyne.

The service tool checks the behavior of the startup/shutdown controller

Static overview of the Dezyne model showing the relations between the various
compo-nents. Code is automatically generated from the model.

Dezyne’s approach is to start by creating a model that

captures the behavior of the soft-ware system. The

model serves as a means of communication between

software designer(s) and stakeholders. It ensures that

the requirements formulated by the stakeholders are

thorough, complete and effectively implemented. Dezyne

also allows the software engineer to simulate software

behavior at every step of the development process,

which helps to verify whether the system meets the

requirements. Once tested and verified, computer code is

automatically generated from the model with the press of

a button.

Dezyne’s unique feature: formal verification
What distinguishes Dezyne from other Model Driven

Engineering toolsets is its built-in formal verification

engine. With one click the model is scanned for errors and

checks for unwanted properties like deadlocks, livelocks,

incomplete mapping of events and re-sponses, race

conditions, illegal actions and compliance. When something

is wrong, the verification engine not only finds the error but

also pinpoints its exact location within the model.

BackEndSwDzn―

ModeSupervisor ConManagerSys

FunctionInitiator

DiagnoseSys InstallSys SaveDataSys ManualSys

+

++++

▼▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼▼ ▼

▼

▼

▼

▼

▼

Service Tool

Master
Controller

Slave
Controller1

Slave
Controller2

Slave
Controller3

Ethernet Cable

StartUp/ShutDown Controller

CASESTUDY DEZYNE

Dezyne’s formal verification functionality greatly helped

Saurav Paul in designing the software for the service

tool. “When you commit an error while programming in

the traditional way, it may be detected by the compiler.

But runtime errors are very difficult to detect and debug.

Yet Dezyne shows you immediately where the mistake is

located. After solving the error you can test and verify very

quickly from the model. In traditional programming this

takes much longer.”

Ensuring correct functionality by combining
TDD and Model Driven Engineering
The service tool Saurav Paul worked on has four

functionalities or features: ‘manual mode’, ‘diagnose’,

‘firmware install’ and ‘save data’. In order to ensure

whether these functionalities were working properly,

Saurav used a combination of Test Driven Devel-opment

(TDD) and Model Driven Engineering.

In traditional software development testing takes up

a lot of time. Due to time pressure thorough testing

is therefore often not feasible. This increases the

likelihood of errors showing up later when the software

is implemented. Yet ideally, thorough testing is necessary

to ensure that the software fulfils the requirements of

the system. In Dezyne test-ing does not suffer from

Screenshot of a ‘deadlock’ error in the Dezyne model. Dezyne’s formal
verification func-tionality provides a sequence trace pinpointing the location of
an error.

Screenshot of a software component modeled in Dezyne text based modeling
language.

the same problems as it does in traditional software

development.

What sets Dezyne apart is that the testing phase is much

shorter and more efficient. The components comprising a

software system do not have to be tested very thoroughly,

since Dezyne’s built-in formal verification engine already

checks for unwanted properties, such as deadlocks and

race conditions. The only thing left to be tested is the

functionality of the entire software system. In the future

Verum plans to add more functional property checking,

so that eventually functional correctness can be formally

verified and does not need to be tested separately.

Saurav designed the software for the four functionalities of

the service tool by modeling them in Dezyne. He then ran

unit tests in order to verify the intended behaviour. When

errors showed up during the tests, he was able to correct

them quickly in the model itself before re-testing the whole

system.

CASESTUDY DEZYNE

This combination of testing and (re)modelling results in

quick and efficient adaptations, even late into the design

process. Saurav Paul: “The major difference in Dezyne

is that you spend more time on design and less time on

testing. Because of its formally verified implementation,

Dezyne ensures quality and provides more opportunities

to find and fix design issues in the initial phase of

development.”

Programming by hand
When the features of the service tool were successfully

tested, Saurav was able to pro-duce C# code with a single

mouse click. Apart from C# Dezyne also supports the lan-

guages C, C++, Java, JavaScript and Python.

Dezyne is not suited to design software for algorithms or

to model data flow. These fea-tures cannot be modeled

using Dezyne, but have to be programmed by hand.

Saurav Paul: “Whenever the software had to take data

based decisions or read data, we used handwritten code

instead of the model.” Handwritten code was also used to

glue the software to the pre-existing code of the outside

environment, the Startup/Shutdown con-troller.

Saurav then ran final integration tests to see whether the

new software was working properly with the startup/

shutdown controller. This ensured the succesful completion

of the project.

Project results
In the Philips project the usage of Dezyne led to several

positive results:

•	 Integrating the new software design went much

	 more smoothly than a traditional software design

	 approach. Saurav Paul: “The integration phase was

	 relatively straightforward, because much of the software

	 was already verified in the implementation phase. So you 	

	 know that any errors that show up have to do only with

 	 the integration process and not with errors in the 		

	 software itself.”

•	 Functional testing went smoother as well. Because

	 of its formal verification functionality Dezyne eliminates

	 common design errors like deadlocks and race

	 conditions. This greatly increases the speed and efficiency

	 of the testing phase, as many unwanted properties had

	 already been filtered out.

•	 The software resulted in a more reliable and efficient

	 service tool, which handled errors in a better way. The

	 time required to install new firmware on the startup/	

	 shutdown controller using the new service tool was

	 significantly reduced and stakeholders were happy with 	

	 the functionality and usability of the new tool.

Lessons learned
While working on developing software for the service tool

of the Startup/Shutdown con-troller Saurav Paul learned

valuable lessons about the Dezyne toolset:

•	 Modeling a software system as a composition of small

	 and simple components that in-teract with each other

	 works better than creating one big, complex model. 	

	 Saurav Paul: “When you work with smaller components 	

	 it becomes much easier to test, debug errors or add new 	

	 functionality later on.”

•	 Deciding when to use Dezyne generated code or 		

	 handwritten code. Saurav Paul: “In traditional software 	

	 development control logic and data handling are not 	

	 separated, but are part of the code itself. In Dezyne you 	

	 are forced to make the separation. I learned to make the 	

	 distinction when to use one or the other.”

•	 With Dezyne less bugs and issues showed up in the 	

	 later stages of development when compared to 		

	 traditional methods. “Especially during integration there 	

	 are less bugs, because Dezyne found most of those 	

	 errors before.”

•	 When using Dezyne more time is spent on formulating 	

	 requirements and making the design, but this time is 	

	 gained back in the later stages. “You actually have more

CASESTUDY DEZYNE

Kopenhagen 9

2993 LL Barendrecht

The Netherlands

T +31 (0)88 908 2000

F +31 (0)88 908 2500

info@ict.nl

www.ict.nl

Curious about the possibilities of Model Driven
Engineering and Verum Dezyne? Feel free to
contact our software engineer Saurav Paul to
discuss the opportunities for your organisation.

	 questions when speaking to the stakeholders, 		

	 especially about the ‘what if’ cases. This makes 		

	 the requirements, and also the later software design

	 clearer and more robust leading to greater consumer 	

	 satisfaction.”

•	 Most importantly, Saurav says, Dezyne minimises 		

	 human programming and communication errors, 		

	 saving time and improving efficiency. “Dezyne closes 	

	 the triangle between requirements, formal verification

 	 and code generation. It provides a much better

	 guarantee for a software solution that fits the 		

	 stakeholder’s needs.”

Dezyne: the choice of Philips and others
Our client Philips made a conscious choice to use Dezyne

in this project. Because of the complexity of the the

control logic of the startup/shutdown controller, the

client preferred Dezyne’s formal verification in order to

model, check and verify the functionality adequately.

Contacts:

Saurav Paul
Software Engineer

ICT- Hitech Unit

E: saurav.paul@ict.nl

Ronald Wiericx
Operations Manager

ICT- Hitech Unit

E: ronald.wiericx@ict.nl

Professor Doctor Dorgelolaan 30

5613 AM Eindhoven

Dezyne closes the triangle between requirements, formal verification and code
generation.

mailto:info%40ict.nl?subject=
http://www.ict.nl
mailto:saurav.paul%40ict.nl?subject=
mailto:ronald.wiericx%40ict.nl?subject=

