L “
L ICT Improve

of ICT Group

Gaspar Nagy

RAMP up your testing solution:
test automation patterns

14.35 - 15.15 - auditorium

s

' spechsglutions
P given.when.then.

Ramp Up Your Testing Solution:
Test Automation Patterns

LDE2S
10th April 2025

Gaspar Nagy

coach e trainer e bdd addict ¢ creator of specflow

“The BDD Books” series ¢ https://bddbooks.com
linkedin.com/in/gasparnagy ® gaspar@specsolutions.eu

THE BDD BOOKS THE BDD BOOKS
Discovery Formulation
ExpiSeapohavitne ey Cxafpies Pocument examples with Given/When/Then

Terhorst-North

W—) 3
‘,’/’
= '(’ I - - seb nose
“1™ Gaspar Nagy scmir Na :
S seb Rose and Gaspar Nagy
and Se ; Forewords by Angie Jones
Foreword by Johanna Rothman and Daniel Terhorst-North

Find them on Amazon & Leanpub through https://bddbooks.com!

Q specsolutions

Gaspar Nagy

coach, trainer and bdd addict
creator of SpecFlow &
Reqnroll

gaspar@specsolutions.eu
www.specsolutions.eu
linkedin.com/in/gasparnagy

http://bddboooks.com/

Today

About design patterns

Challenges of test automation today

Benefits of using design patterns for test automation solutions

Characteristics of test automation design patterns

Documenting test automation design patterns

Q Speqsolutions Copyright © Gaspar Nagy

Design Patterns

recognized construct that works

Why design patterns?

Better
Faster
Easier collaboration

L sn

Challenges of Test
Automation

Sgeqsplutions Copyright © Gaspar Nagy

https://unsplash.com/@dnevozhai?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/traffic-highway-junction?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Tests automation as “first class citizen”

Coding standards

Reviews
Tests

* Photo by Gaspar Nagy _

Test automation is difficult

Requires “smart” solutions

Needs time and efforts
Involves expertise, reséarch & collaboration =
This is a STUJER

How could patterns
help?

Sgeqsplutions Copyright © Gaspar Nagy

Tests are mostly composed of “usual tasks”

Reset database to a baseline
Perform an action and capture result
Query state to verify expectations

-

“Design patterns” can be used & reused!

L e Patterns for “Reset database to a baseline”

1. Restore baseline database backup

Create an empty database and insert base data records
Use in-memory database

Use file-based database and copy baseline file

Wrap test to a DB transaction & cancel

Truncate (empty) tables used by the tests

Track data changes and undo

Detect read-only tests and skip reset after them

b Sl

arkus Spiske on Unsplash

https://unsplash.com/@markusspiske?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/box-of-color-pencils?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

RAMP up your testing solution

Reusability
Abstraction
Maintainability
Performance

https://unsplash.com/@erik_brolin?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/ramp-up?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Test Automation
Design Patterns

Sgeqsplutions Copyright © Gaspar Nagy

The Ul analogy

Both
* represent an external interface of the application
* are active (click on a button <> perform action on SUT)

e are event-based, async and responsive (display data as arrives <> verify result as
becomes available)

* have simple structure: sequence, containment (e.g. no recursion)
e contain repeating needs (controls <> usual test tasks)

* include a mix of concerns (view/controller <> test-description/actions)

Hexagonal: Butzin, Bjorn & Golatowski, Frank & Timmermann, Dirk. (2016). Microservices approach for the internet of things. 1-6. 10.1109/ETFA.2016.7733707.

Onion: Basic Rules for effective Onion Architecture by Bran Lim

https://medium.com/@BranLim/basic-rules-for-effective-onion-architecture-a32af1f3b469

Generic & project-specific patterns

The high level of reusability encourages teams to think about discovering project-
specific patterns.

e Easier to develop (more specific context)

e Easier to document (sometimes the example in the code is enough)

Some test automation patterns are usable in broader context

* They can become part of the tool-belt of the test automation experts

//
{ Photo by christian erra on Unsplash
I\ Fs

https://unsplash.com/@christian_9523?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/custom-made?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Project-specific pattern discovery process

identify repeating task develop pattern for the task

probe pattern for other usage document pattern apply pattern

increase abstraction if needed

identify solution to be repeated extract pattern
(feel the need to copy-paste)

Q Speqsolutions Copyright © Gaspar Nagy

test - dev

collaboration

——— - - - s - I I
e — ———
——— S = ¥
S = e - :——;:"
0 — :
= — — ~
e T ~

This is shared
knowledge

Documenting Test
Automation Design
Patterns

Sgeqsplutions Copyright © Gaspar Nagy

The book project

THE BDD BOOKS

THE
Discovery
Explore behaviour using examples

.

THE BDD BOOKS

Formulation

. Pocument examples with Given'When'Then
|

Patterns

Patterns for BDD automation to

v Rovedl
THE BDD BOOKS
Automation

]

THE BDD BOC
Automation with
SpecFlo

BDD for NET

| e

How to document the patterns?

* Name & Intent — short summary

* Motivation — situation example

* Applicability — list of useful contexts
 Structure — diagram

* Participants & Collaborations — abstract description of
the pattern

e Consequences — benefits, trade-offs

* Implementation & Sample — implementation notes &
concrete example

3 w °

The Layering Problem

Test Goals Test Actions Auto SUT

External

Sample Patterns: Ensure

Intent
Maintainable management of scenario context, whether expressed explicitly or implicitiy.

Motivation

The formulated BOD scenarios often contain implicit context: expectations about the context
that we don't want to explicitly express as Given steps, because they are obvious from the
scenario (See Formulation 4.11). This is a commonly used technique and every scenario has
several implicit context expectations that we never write out (e.g. the system is in an operational
state).

In the WIMP application there are many requirements (and therefore many scenarios) that
describe what happens with a particular order. For example when the user chooses to collect
their order from the restaurant, they need to confirm their contact details. This is described with
the following scenario.

Rule: Any wisitor to the website can place a customer-collection order
Scenario: Authenticated customer chooses to collect order
Given the customer is authenticated
When they choose to collect their order (1)
Then they should be asked to confirm contact details

In this scenario at (1) we talk about the customer's order, but we never explicitly mention that
the customer has placed an order or what pizzas they have ordered. It is obvious from the
scenario that the customer has placed an order somehow.

In contrast to that there are some cases when some details about the order are important. The
following example describes the expectation that for customer-collection orders we need to print
a collection receipt that contains the number of boxes to be collected, so that it should be easy
to verify that all items have been handed over to the customer on collection.

Rule: A collection receipt has to be printed for customer-collection orders
Scenario: The number of pizzas to be handed over is indicated on the receipt
Given the customer has placed an order for 3 pizzas (2)
When they choose to collect their order (3)
Then a collection receipt should be printed with
| boxes to be collected |
13 |

The scenario above contains the same When step as the previous one (3), but now we have an
additional Given step (2) that describes the details of the order that has been placed.

As it might be clear from these examples, the When step (1) and (3) is reused in two different
situations: when there were no previous steps about the order and when the order specifics
have been described in a previous step (2).

How can we automate the When step so that it is reusable for both situations? How can we
make sure that the details about the order placement are not disturbing the automation logic we
would provide to simulate that the customer chooses to collect their order?

The placement of an order is a prerequisite for choosing customer-collection for the order. The
Ensure pattern provides a solution to ensure that the prerequisite has been fulfilled by tracking
or checking if the order has been placed already and automatically placing some default order if
not.

Applicability

Use the Ensure pattern when
s Astep has a prerequisite (prerequisite step) that we must make sure has happened to
be able to execute the step correctly
* Astep has a prerequisite that is sometimes explicitly in the
prerequisite step), but sometimes it is considered to be implicit

Structure

Ensure

—
S iapmneets hnp]

e

Scanarts

slvan [depacency descriptar ste]
whwn [dependent stes]

dafinitian

Participants

+ Dependent step definition (=> WhenTheyChoose ToCollectTheirOrder method)
o The step definition that requires the prerequisite to be fulfilled
» Explicit prerequisite step definition (== GivenTheCustomerHasPlacedAnOrderForPizzas
method)
o The step definition{g) that perform the actions to fulfill an explicit prerequisite

= Prerequisite object (=> OrderPlacementPrerequisite class)
o This is the class that implements the ensure logic
o It containg the necessary fulfill functionality to satisfy the prerequisite

o It contains the r y tracking or querying functionality to ine whether
the prerequisite has already been fulfilled
o It ensure functi ity that the dependent step can call

e Ensure infrastructure (=> PrerequisiteBase class, TrackedPrereguisiteBasze class)
o It containg the infrastructure code to perform the ensure logic
o It may also include logging to improve the diagnosis of the prerequisite
management

Collaborations

=« The dependent step ition obtains the prer isite object using the state sharing
mechanism of your BDD automation tool, e.g. World object or DI (see TODO:ref).

e The dependent step definition invokes the ensure functionalify of the prerequisite.

e The ensuwre functionality (in the ensure infrastructure) determines whether the
prerequisite has been fulfilled using the fracking or guerying functionality. If it tums out
that the prerequisite was not fulfilled yet, it invokes the fulfil functionality of the
prerequisite object.

s |f the prerequisite object is tracking fulfilment. any explicit prerequisite step definition will
need to signal that the prerequisite has been fulfilled.

Consequences

Here are key consequences of the Ensure pattern:

1. Allows briefer scenarios, through of pr The scenarios
without the obwious context steps will be easier to understand and maintain. This may
also eliminate the need for using background steps that make the scenarios less
readable.

2. Permits more flexible by makil p of p ptional
It is easier to use implicit contexts and therefore people will be better encouraged to not
state obvious context statements as additional Given steps.

3. Avoids code duplication. Instead of duplicating the statements to fulfill the prerequisite
to each step definition where the prerequisite is needed, they can be implemented in a
single location.

4. Makes execution faster. The automation code does not need to perform the steps that
are required to fulfill the prerequisite multiple times.

5. Can make p isite-related p better diagnosable. When including logging
statements into the ensure infrastructure classes, all prerequisite related code will
provide the nect
problems easier.

6. Complex prerequisite graphs may be harder to track. When there are many
prerequisites of this kind in the automation solution and especially when there are even

=ary log information to make the diagnosis of any prerequisite-related

Wrap -up

Q Speqsolutions Copyright © Gaspar Nagy
S teird

Wrap-up

* Design patterns are powerful tools

* Only good tests make sense

* Tests should really be first class citizens

e Tests composed of “usual tasks”, so design patterns are super-powerful

* You can discover project-specific patterns — this also helps dev-test collaboration
* But many patterns are even more broadly usable

* Think of “Ul analogy” and test layers

Q Speqsolutions Copyright © Gaspar Nagy

Gaspar Nagy
coach e trainer ¢ bdd addict ¢ creator of specflow
“The BDD Books” series ¢ https://bddbooks.com
linkedin.com/in/gasparnagy ¢ gaspar@specsolutions.eu

specsolutions

given.when.then.

SQeqsqlutions Copyright © Gaspar Nagy

L -3

TICT Improve
Part of ICT Group

Thank you for your
attention!

Share your insights using the hashtag #LDE25 and tag @ICT
Improve!

s

14.35-15.15

15.25 - 16.10

15.25-17.00

L
ICT Improve

Part of ICT Group

| PROGRAMME

Living Documentation Event
10 April 2025

Walk in

Opening Auditorium

Keynote Gaspar Nagy - RAMP up your
testing solution: test automation patterns Auditorium

Choose between three tracks:

Karl van Heijster

Testing: A Philosophical Retrospective PO83
Jennek Geels

The journey is the reward Auditorium
Workshop Bas Dijkstra & Gaspar Nagy

| know it's only RegnRoll (but I like it) -

Making the most of the Automation

phase in BDD (part 1) PO30

16.15 - 17.00

Continuation

17.05 - 17.50

17.55 - 18.50

Choose between two tracks:

Rob Albers, Ronald Holthuizen &
Martijn van Tienen - BDD, (A)TDD
and DevOps practices as a recipe for

continuous compliance PO83

Rick Easton Tracy - Castles, not Silos Auditorium

Workshop Bas Dijkstra & Gaspar Nagy -
| know it’s only RegnRoll (but | like it) - Making
the most of the Automation phase in BDD (part 2) PO30

Choose between three tracks:

Jacob Duizer - From Team Topologies
to Behavior-Driven Development:

Building Teams That Deliver PO83
Pieter Withaar - Al-First BDD, what if
we redesign BDD to be Al-first? Auditorium

Machiel van der Bijl - Model Driven Design
(MDD): A new approach to Living Documentation PO30

Dinner: Beer and pizza’s

Keynote: Angelo Hulshout - GenAl

and creativity - threat, or tool Auditorium

LDE Community + Panel Discussion Auditorium

Drinks

	Slide 1: Gáspár Nagy RAMP up your testing solution: test automation patterns
	Slide 2: Ramp Up Your Testing Solution: Test Automation Patterns
	Slide 3
	Slide 4
	Slide 5: Today
	Slide 6
	Slide 7: Why design patterns?
	Slide 8
	Slide 9: Why to build a good quality test automation
	Slide 10: Tests automation as “first class citizen”
	Slide 12: Test automation is difficult
	Slide 13
	Slide 14: Tests are mostly composed of “usual tasks”
	Slide 15: “Design patterns” can be used & reused!
	Slide 16: RAMP up your testing solution
	Slide 17
	Slide 19: The UI analogy
	Slide 20: Generic & project-specific patterns
	Slide 21: Project-specific pattern discovery process
	Slide 22
	Slide 23
	Slide 24: The book project
	Slide 25: How to document the patterns?
	Slide 26: The Layering Problem
	Slide 27: Samples
	Slide 28
	Slide 29: Wrap-up
	Slide 30
	Slide 32
	Slide 33: Thank you for your attention!
	Slide 34

