
Rob Albers, Ronald Holthuizen & Martijn van Tienen

BDD, (A)TDD and DevOps practices as a
recipe for continuous compliance

16.15 – 17.00 – P083

Peopl
e

This track is sponsored by:

Martijn van Tienen, Ronald Holthuizen & Rob Albers

Image Guided Therapy Systems – R&D – iApps

April 2025

BDD, (A)TDD and DevOps practices
as a recipe for continuous compliance

© Koninklijke Philips N.V.

© Koninklijke Philips N.V.

Platforms

Features

Updates

Leadership ask

© Koninklijke Philips N.V.

• 15+ Software as Medical Devices

• 2M+ Software Lines of Code

Problem statement: Release cadence > 1 year

• Agile Release train : 8 feature factory teams

• Releasing can take more than a year

© Koninklijke Philips N.V.

A look at our competition

>100 updates in 5 years (2016-2021)

Cydar Maps

Siemens Teamplay

Siemens CT

Philips CardioLogs

>60 updates in 5 years (2018-2024)

© Koninklijke Philips N.V.

“If it hurts, do it more often”
Jez Humble

Leadership ask

Releasing software can take more than one year

How to reduce the time after end of development to 1 week AND
with improved quality?

© Koninklijke Philips N.V.

• Feature estimation predictability

• Team capacity

• Team burndown

• Team velocity

• # of bugs found

• % code coverage

We are used to track many unhelpful KPIs

• “Start celebrating results: you cannot cheat shipping!” Microsoft

• Value stream management | DORA metrics | Customer feedback

• DORA metrics combined with customer feedback inform teams
where to focus improvement efforts and how to position their
product and services against competitors

Measure the most critical and impactful: business outcomes

Value stream management

Production Lead Time (for Change)

(System)
Requirements

Engineering

(Software)
Development
Engineering

Testing &
Bug Fixing
Features

End of
Development

External
Release

Testing &
Bug Fixing

Regressions

Quality &
Regulatory

Bug Fixing
Features

Bug Fixing
Regressions

Bug Fixing
Requirements

Verification &
Validation

Release time can take up more than one year !

How to reduce this to 1 week AND with improved quality?

Release Time

Value stream management

(System)
Requirements

Engineering

(Software)
Development
Engineering

Testing &
Bug Fixing
Features

End of
Development

External
Release

Testing &
Bug Fixing

Regressions

Quality &
Regulatory

Bug Fixing
Features

Bug Fixing
Regressions

Bug Fixing
Requirements

Verification &
Validation

(System)
Requirements

Engineering

(Software)
Development
Engineering

Verification
Features

Internal
Release

External
Release

Verification
Regressions

Quality &
Regulatory

Validation

Bug Fixing
Features

Bug Fixing
Regressions

Bug Fixing
Requirements

Shift Left

NEW

Value stream management

(System)
Requirements

Engineering

(Software)
Development
Engineering

Verification
Features

Internal
Release

External
Release

Verification
Regressions

Quality &
Regulatory

Validation

Bug Fixing
Features

Bug Fixing
Regressions

Bug Fixing
Requirements

Shift Left

NEW

BDD: Requirements as Acceptance tests

Automation & Living Documentation

© Koninklijke Philips N.V.

Where we now

• Behavior Driven Development

• 3-Amigo sessions (creating aligned view)

• Single Source of Truth (feature file) in GIT

• Continues integration / Continues deployment
(CI/CD) through GitHub

© Koninklijke Philips N.V.

• Writing feature files takes more time! (pain taken upfront)
• More issues are found earlier

Learnings so far

Shift Left

(System)
Requirements

Engineering

(Software)
Development
Engineering

Verification
Features

Internal
Release

External
Release

Verification
Regressions

Quality &
Regulatory

Work ++ Work --

© Koninklijke Philips N.V.

• Scale-up is hard!
• Created guidelines document related to BDD:

• Process and way of working
• Domain Specific Language explanation and usage

Learnings so far

© Koninklijke Philips N.V.

• Scale-up is hard!
• We want back from 3 smaller teams into 1 big team (with central 3-Amigo)

Learnings so far

Team

Team

Team

Team

© Koninklijke Philips N.V.

• Feature file typically focused on (the happy flow) scenarios to explain the rule
• Formal evidence should contain (more) corner cases
• 2-Step approach to unblock development as soon as possible

Learnings so far

3-Amigo

Test-AmigoFeature file

Devs

Feature file++

Product
Automation

© Koninklijke Philips N.V.

• Automation using Image Comparison
• Pro:

• Easier to prove correctness in formal evidence
• Roughly doing what manual tester would do

• Con:
• Testing at highest level
• Hard to be used on non-deterministic parts of the system (e.g. Radiation)

• Ongoing: Coupling formal evidence with class level output

Learnings so far

© Koninklijke Philips N.V.

• Manual testers still needed!
• Focus shifting from regression like testing to exploratory / workflow testing

Learnings so far

© Koninklijke Philips N.V.

• We needed custom Document generation tooling

Learnings so far

Inputs Processing Outputs

Feature files with
- Features
- Rules
- Scenarios (Explain)

Requirements
doc

Document Generation

MS Word templates
(QMS based)

Feature files with
- Scenarios (Explain)
- Scenarios (Test)

Test Cases
doc

Feature files with
- Features
- Rules
- Scenarios (Explain)
- Scenarios (Test)

Test results
doc

ReqnRoll

© Koninklijke Philips N.V.

• Introduce promotional model for publishing requirements to formal documentation

Documentation == Product

Learnings so far

© Koninklijke Philips N.V.

Value stream management

(System)
Requirements

Engineering

(Software)
Development
Engineering

Verification
Features

Internal
Release

External
Release

Verification
Regressions

Quality &
Regulatory

Validation

Bug Fixing
Features

Bug Fixing
Regressions

Bug Fixing
Requirements

Shift Left

NEW

Requirements as Acceptance tests

Automation & Living Documentation

Value stream management

(System)
Requirements

Engineering

(Software)
Development
Engineering

Verification
Features

Internal
Release

External
Release

Verification
Regressions

Quality &
Regulatory

ValidationNEW

Scaling Engineering for fast flow

Bug Fixing
Features

Bug Fixing
Regressions

Bug Fixing
Requirements

E2E value stream mapping: (external) dependencies

Software as Medical Device

Modular Architecture Design

Application
Main

Window
View A

Algo
A

Model
A

Workflow
A

Module 1 -- N

Application
Model

Interface
Adapter

Application Main Window

Application Model

Interface Adapter

Sh
ar

ed
 m

o
d

u
le View

Model Sh
ar

ed
 m

o
d

u
le

 2

Sh
ar

e
d

 m
o

d
u

le

 N

V
e

rt
ic

al
 S

lic
e

(F
ea

tu
re

)

V
e

rt
ic

al
 S

lic
e

(F
ea

tu
re

)

V
e

rt
ic

al
 S

lic
e

(F
ea

tu
re

) • Controls
• Visuals

• Models
• IO

Scaling Engineering for Fast Flow : Team Topologies
Design our teams to match the required software architecture

(Feature)

(Feature)

(Feature)

Scaling Engineering for Fast Flow : Team Topologies
Design our teams to match the required software architecture

(Feature)

(Feature)

(Feature)

Test
Auto-

mation

BDD
Req.

Scaling Engineering for Fast Flow : Team Topologies
Design our teams to match the required software architecture

(Feature)

(Feature)

(Feature)

Test
Auto-

mation

BDD
Req.

Scaling Engineering for Fast Flow : Team Topologies
Design our teams to match the required software architecture

Learnings so far

Task- switching

Distributing the (changed) workload across teams

VS

Learnings so far

Scaled Agile on top of traditional project management Continuous Delivery (CD) engineering discipline

High coordination and alignment cost for predictability

Ambiguous management layers and process roles

VS

Descaling Agile and Decouple for Speed

Continuous Improvement by measuring flow

Continuous Integration

DevOps as self-service

Continuous Deployment

• Local development PC
• Target PC + Software simulator
• Target PC + Virtual Azurion
• Target PC + Azurion Lab

• Biplane
• Monoplane
• …

© Koninklijke Philips N.V.
Group HRM | CoE Rewards & CoE ITM35

BDD in the regulated medical device industry
From BDD to full and continuous compliance

Regulatory perspectives on medical software.

• Risk Management
• Clinical validation – Safety & Effectiveness
• Usability evaluation – Formative & Summative
• Failure mode and effects analysis
• Algorithms
• Cybersecurity
• IEC62304, IEC 82304, IEC 80001, …

Why Agile/BDD and why change the way we are working?

• For decades there have been perspective differences between traditional system engineering processes and Agile/iterative
software development, for software-only products.1

• The software industry has moved to iterative development with quick development cycles.
• Not only “new” companies, like Google & Facebook, but also legacy companies like Microsoft have moved to this approach.2,3

• Shipping of features moved from a yearly cycle to a 3-week sprint cycle at Microsoft.2

• Agile improved R&D efficiency by 20-30% for medical software development in Abbott.4

• With BDD, Agile way of working can be combined with formal requirements & verification management required by regulated
industries, while still supporting iterative development cycles.
• This enables regulated industry to better adopt iterative development methods.
• High degree of document and process automation are required to implement this successfully.

• FDA & regulatory bodies are starting to recognize Agile as best practice as are becoming more open to supporting this
development methodology.5

1 = Requirements Engineering in Agile Software Development, De Lucia et al. (2003)
2 = Facebook release cycles
3 = Microsoft iterative development
4 = Adopting Agile in an FDA Regulated Environment
5 = Guidance on the use of Agile in Medical Device Software for FDA compliance

Cheetah from SIT to
end of SVER to 10

months.
How to reduce this to
1 week with improved

quality?

https://www.researchgate.net/publication/228988887_Requirements_Engineering_in_Agile_Software_Development
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://learn.microsoft.com/en-us/devops/plan/how-microsoft-plans-devops
https://ieeexplore.ieee.org/document/5261092
https://docs.philips.com/:b:/g/personal/ronald_holthuizen_philips_com/EXkPpqXhP6RIqdmg1k_OVkwBG_sJz6o1FBEt-352M6ThGg?e=Cp7Fih

Using BDD to create PEPF deliverables
Single source of truth in Git .feature files to generate PEPF deliverables Business and User Requirements

Use Scenarios

Product & Element Requirements

Test Protocols

Technical Design

Test Records

Living Doc.
View -

Feature
focus

R&D Focus

Functional
product

requirement
to test

focusing on a
specific
feature

Maps to BDD, but
not captured in

feature files.

Maps to BDD & captured in
feature files. Document should

be automatically generated.

Not explicitly
part of BDD.

PEPF View – Stakeholder & regulatory focus
Layers of documents with a full product scope

• Living Documentation with a single source of truth provides
the same content as PEPF (functional product requirements,
element requirements, test specifications & test reports),
although typically structured as different views.

• Test specification of BDD is an executable specification in the
Gherkin syntax.

• Multiple views ensure that the relevant information is
available for at the right moment for the right person, where
the BDD view will help drive consistency over the multiple
document layers.

• Living Documentation: At any moment, PEPF documents are
of release quality and can be automatically generated.

• Tooling is needed to ensure a single source of truth that
automates the different views both the BDD Living
documentation view and PEPF document view and that links
to test driven development.

How to write, control and approve documents as a sum of its parts?

Quality and content increases over the phasesDocumentation becomes stale during development

• This should include documents that have dependencies towards the requirements documents, like FMEA, Risk Management,
decision logs & traceability documents.

• A cadency should be established where documents are assembled & reviewed.
• High-level documentation is needed e.g. for regulatory submissions.

• Start executing incremental document generation, with multiple complete approval cycles.

Mock SVER: Example Information Flow

Time

Start
mini sVer

End
mini sVer

Auto
Test Run

1

Auto
Test Run

3

Auto
TCR Test

Run 3 Auto test system

Auto
Test Run

2

TCR Test
Run 2 Virtual test platform

Manual
test A

Manual
test D

Manual
test C

Azurion System
TCR All

Manuals
(A)

TCR All
Manuals

(A..D)
TCR All
Manual

s
(A..E)

Req Matrix
doc

(1-2, A..D)

Req Matrix doc
3

(1..3, A..E)

Req Matrix
doc

(1, A)

Final
doc

Intermediate
Non-final doc

Prod
Req Doc

Test
Case
Doc

Manual
test E

Manual
test B

TCR All
Manuals

(A..B)

Auto
TCR Test

Run 1

Mock SVER: Example Information Flow

Time

Start
mini sVer

End
mini sVer

Auto
Test Run

1

Auto
Test Run

3

Auto
TCR Test

Run 3 Auto test system

Auto
Test Run

2

TCR Test
Run 2 Virtual test platform

Manual
test A

Manual
test D

Manual
test C

Azurion System
TCR All

Manuals
(A)

TCR All
Manuals

(A..D)
TCR All
Manual

s
(A..E)

Req Matrix
doc

(1-2, A..D)

Req Matrix doc
3

(1..3, A..E)

Req Matrix
doc

(1, A)

Final
doc

Intermediate
Non-final doc

Prod
Req Doc

Test
Case
Doc

Manual
test E

Manual
test B

TCR All
Manuals

(A..B)

Auto
TCR Test

Run 1

Successful mock-SVER run in 2 days (software build,
automated test execution and doc generation in 50 minutes)

Generated documents reviewed by QA and Q&R
(no majors found on the process ☺)

© Koninklijke Philips N.V.42

04/22/202543

Requirements as Acceptance tests

Automation & Living Documentation

Modular Architecture Design

Team Topologies

DevOps practices measuring flow

Continuous Compliance

The release time for a Philips Software as Medical Device
can be shortened to < 1 week AND with improved quality!

Thank you!

© Koninklijke Philips N.V.

Thank you for your
attention!
Share your insights using the hashtag #LDE25 and tag @ICT
Improve!

© Koninklijke Philips N.V.Classifcation: Public (R4) - Internal (R3) - Confidential (R2) - Secret (R1) (edit this line in footer text option)

	Standaardsectie
	Slide 1: Rob Albers, Ronald Holthuizen & Martijn van Tienen BDD, (A)TDD and DevOps practices as a recipe for continuous compliance
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Thank you for your attention!
	Slide 46

